摘要
Cu2O是目前最有潜力的可见光光催化剂之一,在太阳能电池、一氧化碳氧化、光催化剂、传感器、化学模板等方面有着广泛的应用。然而,Cu2O光生电子-空穴对具有容易复合、易发生光腐蚀、稳定性不好等特性,使其在实际应用上面临很大的挑战,因此如何有效地提高Cu2O的光催化性能成为国内外研究者关注的焦点。首先,本文围绕Cu2O半导体的形貌控制、杂原子掺杂以及构建半导体异质结这三方面对Cu2O光催化性能的提升进行系统阐述,其中构建半导体异质结是提升Cu2O光催化性能最有效的方法,Cu2O与贵金属、金属氧化物以及碳材料构成的复合半导体异质结均有效地提高了Cu2O的光催化活性;其次,从复合半导体异质结、肖特基结以及Z-scheme机制三方面分析并讨论了Cu2O光催化增强机制;最后对Cu2O基纳米复合材料在电子结构、界面性质以及表面负载的成分和厚度等方面的研究进行了展望。
As one of the most promising visible light photocatalysts, Cu2O has potential applications in many multidisciplinary fields such as solar cells, carbon monoxide oxidation, photocatalysts, sensors,chemical templates. However, due to the easy recombination of its photo-generated electron-hole, quick photocorrosion and poor stability, Cu2O still faces great challenges in its practical application. Therefore,the studies in the improvement of the photocatalytic performance of Cu2O has gained extensive attentions.Firstly, three improvement methods of morphology control, heteroatom doping, and semiconductor heterojunction are introduced. It is concluded that the construction of semiconductor heterojunction is the most effective method to improve the photocatalytic performance of Cu2O and the heterostructures with noble metal, metal oxides, and carbon material are preferred. Secondly, the photocatalytic enhancement mechanism of Cu2O was discussed with respect to the composited semiconductor heterojunction, Schottky junction and Z-scheme mechanism. Finally, the research directions of Cu2O-based nanocomposites,which contains electronic structure, interface properties, and composition and thickness of surface loads are given.
作者
龙丹
周俊伶
时洪民
王冠然
李红双
赵苾艺
李贞玉
LONG Dan;ZHOU Junling;SHI Hongmin;WANG Guanran;LI Hongshuang;ZHAO Biyi;LI Zhenyu(School of Chemical Engineering,Changchun University of Technology,Changchun 130012,Jilin,China)
出处
《化工进展》
EI
CAS
CSCD
北大核心
2019年第6期2756-2767,共12页
Chemical Industry and Engineering Progress
基金
吉林省自然科学基金(20160101322JC)
吉林省教育厅“十三五”科学技术研究项目(2016350)
关键词
氧化亚铜
光化学
催化
形貌控制
杂原子掺杂
半导体异质结
优化
cuprous oxide
photochemistry
catalysis
morphology control
heteroatom doping
semiconductor heterojunction
optimization