期刊文献+

基于BLSTM的临床文本实体关系抽取 被引量:2

Clinical Text Entity Relationship Extraction Based on BLSTM
下载PDF
导出
摘要 实体关系的提取是构建知识库的重要组成部分,对临床文本实体关系的研究可以促进医疗卫生的发展。传统针对实体关系抽取的方法大多是基于规则或是机器学习,需要领域专家来制定大量特征,而且特征的多少和准确性同时影响关系抽取结果的准确性。为了能更好的提取文本特征,同时减少手工制造特征带来的麻烦,该文提出使用双向长短期记忆网络(BLSTM),利用该模型提取句子级语义特征,从而达到更好的实体关系抽取效果。通过对比其他模型,证实了该模型的有效性。 The extraction of entity relationships is an important part of building a knowledge base.The study of the relationship between clinical text can promote the development of health care.Traditional methods for entity relationship extraction are mostly based on rules or machine learning.Domain experts are required to manufacture a large number of features,the number and accuracy of features affect the accuracy of the relationship extraction results. In order to extract more effective text features and reduce the trouble caused by hand-made features,this paper proposes to use bidirectional long short-term memory network (BLSTM) to extract sentence-level semantic features, so as to achieve better entity relationship extraction.The validity of the model was confirmed by comparing other models.
作者 关鹏举 曹春萍 GUAN Peng-ju;CAO Chun-ping(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《软件》 2019年第5期159-162,共4页 Software
关键词 实体关系抽取 临床文本 特征提取 双向长短期记忆网络 Entity relationship extraction Clinical text Feature extraction BLSTM
  • 相关文献

参考文献9

二级参考文献61

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2黄丹.网络医疗对医疗服务理念的挑战[J].中药研究与信息,2005,7(9):31-32. 被引量:4
  • 3张素香,文娟,秦颖,袁彩霞,钟义信.实体关系的自动抽取研究[J].哈尔滨工程大学学报,2006,27(B07):370-373. 被引量:10
  • 4刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 5In: Proceedings of the 6th Message Understanding Conference (MUC - 7) [ C ]. National Institute of Standars and Technology, 1998.
  • 6C. Aone and M. Ramos-Santacruz. Rees: A large-scale relation and event extraction system[A]. In: Proceedings of the 6th Applied Natural Language Processing Conference[C] ,pages 76- 83, 2000.
  • 7S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R. Weischedel, and the Annotation Group.Algorithms that learn to extract information-BBN: Description of the SIFT system as used for MUC[ A]. In: Proceedings of the Seventh Message Understanding Conference (MUC-7)[C], 1998.
  • 8S. Soderland. Learning information extraction rules for semi-structured and free text[J]. Machine Learning, 1999. 34(1 - 3) :233 - 272.
  • 9N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines[ M]. Cambridge University Press,Cambirdge University, 2000.
  • 10T. Zhang. Regularized winnow methods[A]. In: Advances in Neural Information Processing Systems 13[C], pages703 - 709, 2001.

共引文献248

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部