期刊文献+

结合测度整合和AWCBA算法的个人信用评估研究

Personal Credit Evaluation Combining Measure Integration and AWCBA Algorithm
下载PDF
导出
摘要 在个人信用评估领域,对个人信用等级的预测是最具有挑战性的。提高对个人信用等级预测的准确度可以避免大量死账坏账的出现。然而传统的个人信用评估模型假设全部属性都具有相同的重要性,并且使用单一测度进行规则的剪枝和预测,这些个人信用评估模型往往太主观,不能取得较好的分类效果。该研究结合测度整合和(Adaptive Weighted Classification Base of Association,AWCBA)算法构建了个人信用评估模型,对客户基础属性进行自适应化加权,并引用了支持度、置信度和卡方测度的调和均值作为分类依据,实现个人信用等级的分类,与其他算法相比,AWCBA算法预测准确度比其他算法都要高。 In the field of personal credit evaluation,the prediction of personal credit rating is the most challenging.Improving the accuracy of personal credit rating prediction can avoid a large number of bad debts.However,the traditional personal credit evaluation models assume that all attributes are of the same importance,and use a single measure to prune and predict the rules.These personal credit evaluation models are often too subjective to achieve better classification results.Thus,a personal credit rating model is constructed based on the measurement integration and the Adaptive Weighted Classification Base of Association (AWCBA) algorithm.The basic attributes of customers are weighted adaptively,and the harmonic mean of support,confidence and chi-square measures are used as the classification basis to realize the classification of personal credit rating.Compared with other algorithms,the AWCBA algorithm has a higher prediction accuracy.
作者 赵凯 黄全生 张玥 ZHAO Kai;HUANG Quansheng;ZHANG Yue(College of Mathematics and Physics,Anhui Polytechnic University,Wuhu 241000,China)
出处 《安徽工程大学学报》 CAS 2019年第2期56-62,共7页 Journal of Anhui Polytechnic University
基金 安徽高校省级自然科学研究重点基金资助项目(KJ2016A064)
关键词 个人信用评估 关联规则 CBA算法 自适应加权 personal credit evaluation association rules CBA algorithm adaptive weighting.
  • 相关文献

参考文献5

二级参考文献30

  • 1王文平,刘希玉,韩杰.基于并行遗传算法的关联规则挖掘[J].山东师范大学学报(自然科学版),2006,21(4):29-31. 被引量:7
  • 2许小勇.模拟退火算法在指数曲线拟合中的应用[J].四川工程职业技术学院学报,2006(4):35-37. 被引量:6
  • 3倪现君,李国,吴懿慧.基于云模型的数据挖掘技术[J].山东师范大学学报(自然科学版),2007,22(1):33-35. 被引量:7
  • 4王熙照,赵东垒.基于规则兴趣度的关联分类[J].计算机工程与应用,2007,43(25):168-171. 被引量:3
  • 5Li W,Han J,Pei J.CMAR:Accurate and Efficient Classification based on Multiple class-Association Rules. In:ICDM'01, San Jose, CA, 2001.
  • 6Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation. In: SIGMOD'00, Dallas, TX, 2000.
  • 7Liu B,Hsu W,Ma Y.Integrating classification and association rule mining. In: KDD'98, New York, 1998.
  • 8HanJW KamberM.数据挖掘概念与技术[M].机械工业出版社,2001..
  • 9LIU B, HSU W, MAY. Integrating classification and association rule mining [C]// Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining ( KDD-98). New York: AAAI, 1998: 80 - 86.
  • 10LI W M, HAN J W, PEI J. CMAR: accurate and efficient classification based on multiple class-association rules [C]//Proceedings of the 1st IEEE International Conference on Data Mining (ICDM 2001 ). Washington: IEEE Computer Society, 2001: 369- 376.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部