摘要
利用复函数结构变换的方法,考察了Schwarz-Pick引理的变换形式,得到了结构复微分与广义复梯度的表述形式,导出了具有普遍性的\,与结构函数s有关的广义Schwarz-Pick引理.极大地推广了Schwarz-Pick引理的研究范围与相关结论的普遍适用性.
The transformation form of Schwarz-Pick lemma was investigated by using the method of structural transformation of complex functions. The expressions of structural complex differential and generalized complex gradient were obtained. The generalized Schwarz-Pick lemma related to structural functions was derived. It greatly enlarged the scope of Schwarz-Pick lemma reseach and the universal applicability of relevant conclusions.
作者
王根
刘洋
WANG Gen;LIU Yang(College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China)
出处
《浙江师范大学学报(自然科学版)》
CAS
2019年第3期274-278,共5页
Journal of Zhejiang Normal University:Natural Sciences
基金
浙江省自然科学基金资助项目(LD19A010001)
关键词
函数变换
Schwarz-Pick引理
广义复梯度
结构复微分
function transformation
Schwarz-Pick lemma
generalized complex gradient
structural complex differentiation