期刊文献+

基于广义Ward聚类的汽车传动主轴系统故障诊断研究 被引量:1

Fault Diagnosis for Spindle System Based on General Ward Clustering
下载PDF
导出
摘要 汽车传动主轴系统故障诊断对保证汽车系统的安全运行具有重要作用。针对汽车传动主轴系统故障诊断特征微弱的问题,在分析汽车传动主轴系统故障网络模型的基础上,提出一种基于广义Ward聚类的汽车传动主轴系统故障诊断方法,并对汽车传动主轴系统过载、滚动轴承元件故障进行实例验证。结果表明该方法能准确对故障类型数据进行聚类,为收集异常数据以便未知故障的发现与诊断提供了数据支持,与多元支持向量机和快速Newman算法的对比结果表明,该方法具有更高的识别精度与效率。 The fault diagnosis of spindle system plays an important role of ensuring the safe operation.According to the spindle system characteristics,this paper analyzes its failure and proposes a fault diagnosis method based on general ward clustering.The spindle overload and the rolling bearing fault are verified by the example.The results indicate that the proposed method can be use to cluster the fault samples effectively.The data support is provided for collecting unusual samples which could be used to discover and diagnose the unknown fault pattern.Compared with multi-class support machines and Fast Newman algorithm,this method is of higher accurateness and productiveness.
作者 黄珊珊 任春晖 HUANG Shanshan;REN Chunhui(Automotive Engineering Department,Shanxi Traffic Vocational and Technical College,Xian 710018,China)
出处 《机械制造与自动化》 2019年第3期80-81,119,共3页 Machine Building & Automation
关键词 汽车 主轴系统 故障诊断 广义Ward聚类 特性提取 automobile spindle system fault diagnosis general ward clustering feature extraction
  • 相关文献

参考文献7

二级参考文献45

  • 1CHIANG L H, RRSSELL E L, BRAATZ R D. Fault detection and diagnosis in industrial systems[M]. Great Britain: Springer-verlag London Limited, 2001.
  • 2MACQUEEN J B. Some methods for classification and analysis of multivariate observations[C]//The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley. 1967: 281-297.
  • 3DUDA R O, HART P E, STORK D G. Pattern classification[M]. 2nd ed. New York: Wiley, 2001.
  • 4THEODORIDIS S, KOUTROUMBAS K. Pattern recognition[M]. 3rd ed. London: Elsevier Academic Press, 2006.
  • 5CHOW E Y, LI B, GODDU G. Intelligent motor fault detection, knowledge-based intelligent techniques in industry[M]. New York: CRC Press, 1999.
  • 6HART P E, GRAHAM J. Ricoh silicon valleyquery-free information retrieval[J]. IEEE Expert: Intelligent Systems and Their Application, 1997, 12(5): 32-37.
  • 7WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(4). 440-442.
  • 8ALBERT R, BARABASI A L. Statistical mechanics of complex networks[J]. Rev. Mod. Phys., 2002, 74(1): 47-97.
  • 9NEWMAN M E J. Detecting community structure in networks[J]. Eur. Phys. J. B, 2004, 38(2): 321-330.
  • 10NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Phys Rev. E, 2004(69): 066133.

共引文献55

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部