期刊文献+

拉普拉斯矩阵在聚类中的应用 被引量:4

Application of Laplacian Matrix in Clustering
下载PDF
导出
摘要 高维数据受冗余数据和噪声数据的影响,聚类效率和准确率低,基于拉普拉斯矩阵的特征值和特征向量的特点,介绍了一种适用于高维数据的新的聚类中心选择算法,算法将拉普拉斯矩阵用于候选聚类中心选择前的数据降维处理,经过对数据进行降维处理,提高了候选聚类中心的准确性,增大了聚类准确率,扩大了聚类数据的种类范围.在10个包含不同数量样本、维度、类别数的数据集上进行了聚类分析,实验结果表明了基于拉普拉斯降维的新聚类中心选择方法的有效性. High-dimensional data is affected by redundant data and noise data,and the clustering efficiency and accuracy are low.Based on the characteristics of eigenvalues and eigenvectors of Laplacian matrix,a new algorithm for cluster center selection is introduced.The algorithm is suitable for high-dimensional data set.Laplacian matrix is used for data set dimension reduction before the selection of the candidate cluster center.After the dimensionality reduction of the data set,the accuracy of the candidate cluster center is improved,and the clustering accuracy is increased.The types of clustering data has been enriched.Cluster analysis was carried out on ten data sets containing different numbers of samples,dimensions and categories.The experimental results have justified the effectiveness of the new cluster center selection algorithm based on Laplacian matrix dimension reduction.
作者 刘颖 张艳邦 LIU Ying;ZHANG Yanbang(College of Mathematics & Information,Xianyang Normal University,Xianyang 712000,China)
出处 《天津科技大学学报》 CAS 2019年第3期76-80,共5页 Journal of Tianjin University of Science & Technology
基金 国家自然科学基金资助项目(61501388)
关键词 拉普拉斯矩阵 聚类 特征值 特征向量 Laplacian matrix clustering eigenvalue eigenvector
  • 相关文献

参考文献7

二级参考文献49

  • 1李光鑫,王珂,张立保.加权多分辨率图像融合的快速算法[J].中国图象图形学报,2005,10(12):1529-1536. 被引量:13
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3徐光宝,姜东焕.自适应多尺度Canny边缘检测[J].山东建筑大学学报,2006,21(4):360-363. 被引量:6
  • 4Seung H S, Lee D D, The manifold ways of perception [J]. Science, 2000, 290(12): 2268-2269
  • 5Tenenbaum J, Silva V D. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290 (12) : 2319-2323
  • 6Saul L K, Roweis S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds [J]. Journal of Machine Learning Research, 2003, 4(6) : 119-155
  • 7Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373-1396
  • 8Zhang Zhenyue, Zha Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment SIAM [J]. Journal of Scientific Computing, 2004, 26(1):313-338
  • 9Weinberger K Q, Sha F, Saul L K. Learning a kernel matrix for nonlinear dimensionality reduction [C] //Proe of the 21st Int Conf on Machine Learning (ICML-04). New York:ACM, 2004: 839-846
  • 10Yan Shuicheng, Xu Dong, et al. Graph embedding and extension: A general framework for dimensionality reduction [J]. IEEE Trans on Pattern Analysis and Machine Intelligence (TPAMI), 2007, 29(1) : 40-51

共引文献57

同被引文献29

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部