摘要
该文对一些半线性Klein-Gordon方程,证明了高频周期解的存在性.对非线性项只假设它的正则性为C^k,且没有非线性项非常小的假设.利用Nash-Moser迭代,在Sobolev空间中得到了周期解.
In this paper, we prove the existence of periodic solutions with high frequencies of some semi-linear Klein-Gordon equations. We only assume the nonlinearities are C^k regular and without smallness. Using Nash-Moser iteration, we obtained some periodic solutions in Sobolev space.
作者
童常青
郑静
Changqing Tong;Jing Zheng(Department of Mathematics, College of Science, Hangzhou Dianzi University, Hangzhou 310018;Department of Statistics, College of Economy, Hangzhou Dianzi University, Hangzhou 310018)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第3期484-500,共17页
Acta Mathematica Scientia
基金
国家社科基金(17BTJ023)~~