期刊文献+

分数布朗运动驱动的脉冲中立型随机泛函微分方程的渐近稳定性 被引量:4

Asymptotic Stability of Impulsive Neutral Stochastic Functional Differential Equation Driven by Fractional Brownian Motion
下载PDF
导出
摘要 该文在实可分的Hilbert空间中,用不动点方法研究了由分数布朗运动驱动的脉冲中立型随机泛函微分方程温和解的P阶矩的渐近稳定性并举例说明所得结论的可行性. In this paper, we consider the asymptotic stability in the p-th moment of mild solutions of impulsive neutral stochastic functional differential equations driven by fractional Brownian motion in a real separable Hilbert space. A fixed point approach is used to achieve the required result. A practical example is provided to illustrate the viability of the abstract result of this work.
作者 崔静 梁秋菊 毕娜娜 Jing Cui;Qiuju Liang;Nana Bi(College of Mathematics and Statistics, Anhui Normal University, Anhui Wuhu 241000)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2019年第3期570-581,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(11401010,11571071) 安徽省自然科学基金(1708085MA03) 安徽省杰出青年学者基金(1608085J06)~~
关键词 渐近稳定性 随机发展方程 分数布朗运动 Asymptotic stability Stochastic evolution equations Fractional Brownian motion
  • 相关文献

参考文献1

二级参考文献22

  • 1Abada N, Benchohra M, Hadda H. Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J Differential Equations, 2009, 246:3834-3863.
  • 2Adimy M, Ezzinbi K, Ouhinou A. Variation of constants formula and almost periodic solutions for some partial functional differential equations with infinite delay. J Math Anal Appl, 2006, 317:668-689.
  • 3Bihari I. A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations. Acta Math Acad Sci, 1956, 7:71-94.
  • 4Benchohra M, Gatsori E, Henderson J, Ntouyas S K. Nondensely defined evolution impulsive differential inclusions with nonlocal conditions. J Math Anal Appl, 2003, 285:307-325.
  • 5Benchohra M, Gorniewicz L. Existence results for nondensely defined impulsive semi- linear functional differential inclusions with infinite delay. J Fixed Point Theory Appl, 2007, 2:11-51.
  • 6Benchohra M, Ntouyas S K, Ouahab A. On nondensely defined semilinear stochastic functional differential equations with nonlocal conditions. J Appl Math Stoch Anal, 2006, Art ID 69584.
  • 7Boufoussi B, Hajji S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statist Probab Lett, 2012, 82: 1549- 1558.
  • 8Caraballo T, Garrido-Atienza M J, Taniguchi T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74:3671-3684.
  • 9Da Prato G, Sinestrari E. Differential operators with non-dense domains. Ann Sc Norm Super Pisa C1 Sci, 1987, 14:285-344.
  • 10Dai D, Heyde C C. Ito's formula with respect to fractional Brownian motion and its application. J Appl Math Stoch Anal, 1996, 9:439-448.

同被引文献23

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部