摘要
该文在实可分的Hilbert空间中,用不动点方法研究了由分数布朗运动驱动的脉冲中立型随机泛函微分方程温和解的P阶矩的渐近稳定性并举例说明所得结论的可行性.
In this paper, we consider the asymptotic stability in the p-th moment of mild solutions of impulsive neutral stochastic functional differential equations driven by fractional Brownian motion in a real separable Hilbert space. A fixed point approach is used to achieve the required result. A practical example is provided to illustrate the viability of the abstract result of this work.
作者
崔静
梁秋菊
毕娜娜
Jing Cui;Qiuju Liang;Nana Bi(College of Mathematics and Statistics, Anhui Normal University, Anhui Wuhu 241000)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第3期570-581,共12页
Acta Mathematica Scientia
基金
国家自然科学基金(11401010,11571071)
安徽省自然科学基金(1708085MA03)
安徽省杰出青年学者基金(1608085J06)~~
关键词
渐近稳定性
随机发展方程
分数布朗运动
Asymptotic stability
Stochastic evolution equations
Fractional Brownian motion