期刊文献+

基于三点法拦截几何的导弹滑模制导律设计 被引量:1

Design of Sliding Mode Control Guidance Law of Missile Based on Three-point Intercept Geometry
下载PDF
导出
摘要 针对传统的三点法制导律在六自由度弹道仿真时的应用限制,设计了一种基于三点法弹目拦截几何的滑模制导律。在地面坐标系下利用方向余弦阵,推导出了三维空间中三点法制导律的弹目拦截几何;将目标机动视为模型扰动量,建立了三点法拦截几何的状态空间方程;基于滑模控制理论,通过选取合适的滑模面并通过极点配置确定其参数,设计了一种滑模制导律;依据Lyapunov稳定性理论,对所设计的制导律进行了稳定性证明并进行了数值仿真。仿真结果表明,在导弹整个飞行过程中,坐标原点、导弹和目标始终都在一条直线上,严格符合三点法弹目拦截几何,并且制导指令相对平滑,符合实际需求。 Aiming at the limit of three-point guidance applied in 6-DOF trajectory simulation,a sliding mode control(SMC) guidance law was proposed based on three-point intercept geometry. By using direction cosine matrix(DCM),the three dimensional intercept geometry of missile-target was modelled in the ground coordinate frame. Taking target maneuver as the model disturbance,the state-space model of three-point intercept geometry was given. An appropriate sliding surface was chosen,and its parameters were determined by pole configuration method,and the guidance law was derived based on SMC theory. Based on Lyapunov stability theory,the stability of the proposed guidance law was proved. The numerical simulation results show that,the origin point together with the position of missile and target are always on the same line in the ground coordinate frame,which satisfies the three-point intercept geometry. The guidance command is relatively smooth during the whole flying process,and it meets the actual requirements.
作者 董飞垚 DONG Feiyao(Air Force Xi’an Flight Academy,Xi’an 710306,China)
出处 《弹道学报》 EI CSCD 北大核心 2019年第2期55-59,共5页 Journal of Ballistics
关键词 导弹 三点法 滑模控制 制导律 missile three-point intercept geometry sliding mode control guidance law
  • 相关文献

参考文献5

二级参考文献26

  • 1朱卫兵,张耀良.战术导弹三点法遥控制导弹道方程的解析解[J].弹箭与制导学报,2006,26(S1):245-247. 被引量:3
  • 2汤一华,陈士橹,徐敏,万自明.基于Terminal滑模的动能拦截器末制导律研究[J].空军工程大学学报(自然科学版),2007,8(2):22-25. 被引量:11
  • 3雷虎民.导弹制导与控制原理[M].北京:国防工业出版社,2009.
  • 4周慧钟,李忠应,王瑾.有翼导弹飞行动力学[M].北京:北京航空航天大学出版社,1987.
  • 5Curtis P Mracek, Ridgely D Brett. Optimal control solution for dual( tail and canard)controlled missiles [ R]. AIAA- 2006-6569,2006.
  • 6Yang C D, Chen H Y. Nonlinear H∞ robust guidance law for homing missiles[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (6) : 882 - 890.
  • 7Zhou D, Mu C-D, Shen T-L. Robust guidance law with L2 gain performance[ J ]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2001, 44(144) : 82 - 88.
  • 8Zhou D, Mu C-D, Xu W-L. Adaptive sliding-mode guidance of a homing missile [ J ]. Journal of Guidance, Control, and Dynamics, 1999, 22(4) :589 - 594.
  • 9Salehi S, Ryan E. On optimal nonlinear feedback regulation of linear plants[ J ]. IEEE Transactions on Automatic Control, 1982, 27 (6) : 1260- 1264.
  • 10Bhat S, Bernsteln D. Lyapunov analysis of finite-time differential equations[J]. Proceedings of the American Control Conference, Seattle, USA, 1995: 1831- 1832.

共引文献84

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部