期刊文献+

基于迁移学习LSSVM的模拟电路故障诊断 被引量:6

Analog Circuit Fault Diagnosis Using Transfer Learning and LSSVM
下载PDF
导出
摘要 采用数据驱动方法进行模拟电路故障诊断时,在目标故障数据较少的条件下,诊断效果显著下降。针对该问题,提出一种基于TL-LSSVM的模拟电路故障诊断方法。该方法将相关的源域数据迁移至目标故障训练集,首先提取输出信号的小波系数作为特征数据,然后在LSSVM分类器的目标函数中增加源域辅助数据的误差惩罚项,构建出新的诊断模型。以滤波电路为诊断实例,实验结果表明,该方法使单、双故障诊断正确率分别达到97.2%和95.7%,显著提高了诊断正确率。 When diagnosing analog circuit faults using data-driven approaches,if the target fault set is insufficient,the diagnostic performance will decrease significantly.To solve the above problem,a novel fault diagnosis method based on transfer learning and least square support vector machine(TL-LSSVM)was proposed.This method transfers related sample set into the target fault training set effectively.In the diagnosis,wavelet coefficients of the output signals are firstly extracted as features.Then,error penalty term of the source domain auxiliary data is added to the objective function of the LSSVM classifier,and constructs a new diagnosis model.Finally,testing samples are imported to the new model for classification.The performance of the proposed approach was validated with a filter circuit.In the experiment,the proposed approach made the accuracy of single and double fault diagnosis reach 97.2% and 95.7%,respectively.and show a significant improvement of diagnostic accuracy in situation of insufficient target fault samples.
作者 庄城城 易辉 张杰 刘帅 ZHUANG Chengcheng;YI Hui;ZHANG Jie;LIU Shuai(College of Electrical Engineering & Control Science,Nanjing 211816,China)
出处 《电子器件》 CAS 北大核心 2019年第3期668-673,共6页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(61503181)
关键词 模拟电路 故障诊断 迁移学习 最小二乘支持向量机 辅助数据 analog circuit fault diagnosis transfer learning least square support vector machine auxiliary data
  • 相关文献

参考文献7

二级参考文献146

  • 1唐曦凌,梁霖,高慧中,罗爱玲.结合连续小波变换和多约束非负矩阵分解的故障特征提取方法[J].振动与冲击,2013,32(19):7-11. 被引量:7
  • 2王承,陈光,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用[J].仪器仪表学报,2005,26(6):578-581. 被引量:12
  • 3袁海英,陈光.模拟电路的可测性及故障诊断方法研究[J].电子测量与仪器学报,2006,20(5):17-20. 被引量:17
  • 4Burdiek B.The qualitative form of optimum transient test signals for analog circuits derived from control theory methods.Proc of IEEE International Symposium on Circuits and Systems,2002,1:157 ~160.
  • 5Taylor D,Platts A.Transient response testing of nonlinear analogue circuits using optimized fault sets.IEE Proceedings on Circuits Device System,2003,150(2):101~112.
  • 6Cesare Alippi,Marcantonio Catelani,Ada Fort,et al.SBT soft fault diagnosis in analog electronic circuits:a sensitivity-based approach by randomized algorithms.IEEE Trans on Instrumentation and Measurement,2002,51(5):1116~1125.
  • 7Martin Hagan T.Backpropagation.Neural network design.Beijing:China Machinary Press,2002.
  • 8Stopjakova V,Micusik D,L' Benuskova,et al.Neural networks-based parametric testing of analog IC.Proc.of IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,2002:408~416.
  • 9Zhang Xuegong.Select and extract signature.Bian Zhaoqi:Pattern identification.Beijing:Tsinghua Press,2000:176~198.
  • 10Leopoldo Angrisani,Pasquale Daponte,Massimo D'Apuzzo.Wavelet network-based detection and classification of transients.IEEE Trans.on Instrumentation and Measurement,2001,50(5):1425~1435.

共引文献588

同被引文献57

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部