摘要
针对模拟电路的故障诊断问题,提出了一种基于深度学习的故障诊断方法。首先测量模拟电路各个故障类别的脉冲响应数据,随后应用深度学习中深度信念网络方法进行特征提取,最后将提取的特征用于建立基于极端学习机的故障诊断模型,从而对模拟电路的各个故障类别进行区分。通过四运放双二阶高通滤波器电路的故障诊断实验对提出的故障诊断方法进行了验证。通过对比实验表明,提出的基于深度信念网络的故障特征提取方法明显优于传统的基于小波分析的故障特征提取方法,有助于提高模拟电路故障诊断正确率。
A fault diagnosis method based on deep learning is proposed for analog circuit fault diagnosis.Analog circuit impulse response signals are measured firstly,and then deep belief network method is used to extract features from the signals.Finally,an extreme learning machine based diagnosis model is constructed based on extracted features to identify different fault classes.Four-op-amp biquad highpass filter circuit fault diagnosis is performed to test the proposed fault diagnosis method.Meanwhile,the comparison result reflects that the proposed DBN based features extraction is superior to the traditional the traditional wavelet analysis based features extraction method,which is helpful in improving the analog circuit fault diagnosis accuracy.
作者
汪晓璐
李畅
张朝龙
WANG Xiaolu;LI Chang;ZHANG Chaolong(School of Information Technology,Jiangsu Vocational Institute of Commerce 1,Nanjing 211168,China;Institute of education,Nanjing University,Nanjing 210093,China;School of Physics and Electronic Engineering,Anqing Normal University 3,Anqing Anhui246011,China)
出处
《电子器件》
CAS
北大核心
2019年第3期674-678,共5页
Chinese Journal of Electron Devices
基金
国家自然科学基金项目(51607004)
关键词
模拟电路
故障诊断
深度学习
深度信念网络
特征提取
analog circuits
fault diagnosis
deep learning
deep belief network
features extraction