期刊文献+

Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii-Moriya interactions 被引量:1

原文传递
导出
摘要 The dynamics of measurement's uncertainty via entropy for a one-dimensional Heisenberg XYZ mode is examined in the presence of an inhomogeneous magnetic field and Dzyaloshinskii-Moriya (DM) interaction. It shows that the uncertainty of interest is intensively in connection with the filed's temperature, the direction-oriented coupling strengths and the magnetic field. It turns out that the stronger coupling strengths and the smaller magnetic field would induce the smaller measurement's uncertainty of interest within the current spin model. Interestingly, we reveal that the evolution of the uncertainty exhibits quite different dynamical behaviors in antiferromagnetic (Ji> 0) and ferromagnetic (Ji< 0) frames. Besides, an analytical solution related to the systematic entanglement (i.e., concurrence) is also derived in such a scenario. Furthermore, it is found that the DM-interaction is desirably working to diminish the magnitude of the measurement's uncertainty in the region of high-temperature. Finally, we remarkably offer a result ful strategy to govern the ent ropy-based uncertainty through utilizing quantum weak measurements, being of fundamentally importance to quantum measurement estimation in the context of solid-state-based quantum information processing and comp ut at ion.
出处 《Frontiers of physics》 SCIE CSCD 2019年第3期123-131,共9页 物理学前沿(英文版)
基金 National Natural Science Foundation of China (Grant Nos. 61601002 and 11575001) Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) the Fund of CAS Key Laboratory of Quantum Information (Grant No. KQI201701).
  • 相关文献

参考文献4

二级参考文献28

  • 1Einstein A, Podolsky B, Rosen N. Phys. Rev., 1935, 47: 777.
  • 2Ali M, Rau A R P, Alber G. Phys. Rev. A, 2010, 81: 042105.
  • 3CAO Y, LI H, LONG G L. Chin. Sci. Bull., 2013, 58: 48-52.
  • 4HU M L. J. Phys. B, 2011, 44: 025502.
  • 5QIN M, CHEN X, LID C C. Int. J. Mod. Phys. B, 2012, 26: 1250097.
  • 6YANG G H, MA Y H, MEl D. Int. J. Theor. Phys., 2008, 47: 1836.
  • 7Chutia S, Friesen M, Joynt R. Phys. Rev. B, 2006, 73: 241304.
  • 8Raedt H D, Miyashita S, Michielsen K. Phys. Rev. B, 2004, 70: 064401.
  • 9CAO M, ZHU S Q. Phys. Rev. A, 2005, 71: 034311.
  • 10QIN M .. BAI Z, LI Y B et al. Opt. Commun., 2011, 284: 3149.

共引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部