期刊文献+

基于多传感器零速修正的行人导航系统研究 被引量:8

Research on pedestrian navigation system based on multi-sensor zero speed correction
下载PDF
导出
摘要 针对行人导航定位系统中惯性导航解算误差累积问题,提出基于多传感器零速修正的行人三维导航定位方法。根据行人足部运动特征,采用支持向量机决策方法对行人运动和静止阶段进行检测分类。在静止阶段,根据多传感器测量数据对导航解算速度、角速度、方向和高度进行误差修正,采用卡尔曼滤波递推方法进行数据融合和滤波估计,实现对方向、位置和速度的跟踪。行人行走实验表明,设计的行人导航定位系统能够有效地跟踪行人行走轨迹,水平方向各楼层平均误差为1. 82%,高度方向平均误差为2. 53%。 Aiming at the accumulation problem of inertial navigation solver error in pedestrian navigation and positioning system,a pedestrian three-dimensional navigation and positioning method based on multi-sensor zero speed correction is proposed. According to the movement characteristics of pedestrian foot,the support vector machine decision-making method is used to detect and classify pedestrian movement and stationary stage. In the stationary stage,according to the multi-sensor data,the navigation solution speed,angular velocity,direction and height can be corrected,and the Kalman filter recursive method is used for data fusion and filter estimation to track the direction,position and speed. Pedestrian walking experiments show that the pedestrian navigation system can effectively track the walking trajectory of pedestrians. The average error of each floor in the horizontal direction is 1. 82%,and the average error in the height direction is 2. 53%.
作者 王晓雷 闫双建 曹玲芝 李栋豪 张庆芳 张吉涛 郑晓婉 Wang Xiaolei;Yan Shuangjian;Cao Lingzhi;Li Donghao;Zhang Qingfang;Zhang Jitao;Zheng Xiaowan(School of Electrical and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2019年第4期58-64,共7页 Journal of Electronic Measurement and Instrumentation
基金 河南省科技攻关项目(162102210210 172102210061) 郑州轻工业大学博士科研基金(2014BSJJ046)资助项目
关键词 行人导航 支持向量机 零速检测 多传感器 零速修正 卡尔曼滤波 pedestrian navigation support vector machine zero speed detection multi-sensor zero speed correction Kalman filter
  • 相关文献

参考文献5

二级参考文献62

  • 1张小峰.我国连续采煤机端帮开采技术[J].煤炭技术,2015,34(6):28-30. 被引量:20
  • 2尚涛,才庆祥,张幼蒂,李克民.我国大型露天煤矿若干生产工艺问题分析[J].中国矿业大学学报,2005,34(2):138-142. 被引量:51
  • 3KIM T K,KITTLER J,CIPOLLA R.On-line learning of mutually orthogonal subspaces for face recognition by image sets [ J ].IEEE Transactions on Signal Processing,2010,19(4):1067-1074.
  • 4SHAKHNAROVICH G,FISHER J W,DARREI,T.Face recognition from long-term observations [ C ]//European Conference on Computer Vision(ECCV).San Diego,USA,2002,3:851-868.
  • 5ARANDJELOVIC O,SHAKHNAROVICH G,FISHER J,et al.Face recognition with image sets using manifold densi-ty divergence[ C]//IEEE International Conference on Com-puter Vision and Pattern Recognition(CVPR).San Diego,USA,2005,1:581-588.
  • 6CARDINAUX F,SANDERSON C,BENGIO S.User au-thentication via adapted statistical models of face images [J].IEEE Transactions on Signal Processing,2006,54(1):361-373.
  • 7ARANDJELOVIC O,CIPOLLA R.Face recognition from face motion manifolds using robust kernel resistor-average distance [ C ]//IEEE Workshop on Face Processing in Video.Washington D C,USA,2004,5:88-93.
  • 8YAMAGUCHI O,FUKUI K,MAEDA K,et al.Face recog-nition using temporal image sequence [ C]//IEEE Interna-tional Conference on Automatic Face and Gesture Recogni-tion.Nara,Japan,1998:318-323.
  • 9FUKUI K,YAMAGUCHI O.Face recognition using multi-viewpoint patterns for robot vision [ C ]//International Sym-posium on Robotics Research.Siena,Italy,2005,15:192-201.
  • 10SAKANO H,MUKAWA N.Kernel mutual subspace method for robust facial image recognition[ C]//Fourth International Conference on Knowledge-based Intelligent Engineering Sys-tems and Allied Technologies.[ S.l.].2000,1:245-248.

共引文献33

同被引文献101

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部