期刊文献+

斜入射时电子穿过石墨烯的透射率问题的分析

Analysis of Transmissivity of Electrons Passing Through Graphene at Oblique Incidence
原文传递
导出
摘要 针对电子斜入射透过石墨烯的问题,以石墨烯层作为势垒,假设势垒宽度为D,势垒高度为V_0,电子从左往右穿过石墨烯层,能量分别设为E_1、E_2、E_3,其中E_1>E_2>E_3;利用薛定谔方程,通过波函数和其一阶导数在x=0和x=D处的连续性条件,进行求解得到斜入射时电子穿过石墨烯的透射率;运用Matlab绘制不同宽度下的透射率,发现透射率的高低与入射角度无关,只与能量有关;入射能量越高,穿过势垒后的能量越大,即透射率越高,同时,势垒宽度越窄,透过的能量也越高;入射能量为0.7倍势垒高度时,透过1倍、2倍、3倍隧道效应长度的透过率分别为势垒高度的55.5%, 32.0%和15.2%。 For analyzing the situation that electron oblique incidence through graphene, it is assumed that graphene layer is as a barrier.The width of the barrier is D and the height is V0.The energies of the electrons that pass through from the incidence layer, the graphene layer, and the transmissive layer are set to E1,E2 and E3(E1>E2>E3).The transmittance of the electrons is obtained by Schr?dinger equation and the continuities of the wave function and its derivative at x=0 and x=D.The figures of the transmissive are drawn using Matlab.The results show us three aspects.The first one is that the transmittance is independent of the incident angle but related to energy.The second one is that the higher the incident energy is, the greater the energy is after passing through the barrier, that is, the better the transmittance.The narrower the barrier width is, the higher the transmission energy is.The third one is that the transmitted energies are 55.5%, 32.0%, 15.2% of the height of the barrier at the widths of the barrier are 1, 2, 3 times of the length of the tunneling effect when the incidence energy is the 0.7 times of the height of the barrier.
作者 孙晨洋 江兴方 SUN Chen-yang;JIANG Xing-fang(School of Mathematics & Physics,Changzhou University,Changzhou 213164,China;Institute of Photoelectric technology,Changzhou University,Changzhou 213164,China;Institute of Photoelectric technology,Suzhou University,Suzhou 215006,China)
出处 《量子光学学报》 北大核心 2019年第2期205-214,共10页 Journal of Quantum Optics
基金 国家自然科学基金(41875026)
关键词 石墨烯 斜入射 薛定谔方程 MATLAB graphene oblique incidence Schrodinger equation Matlab
  • 相关文献

参考文献2

二级参考文献17

  • 1曾谨言.量子力学卷I[M].北京:科学出版社,1995:408-411.
  • 2周世勋,量子力学教程,1983年,45页
  • 3曾谨言,量子力学.上册,1981年,20页
  • 4母国光,光学,1978年,25页
  • 5Klein O. Die reflexion von elektronen an einem potential- sprung nach der relativistischen dynamic von Dirac [ J]. Z Phys,1929,53: 157-165.
  • 6Dombey N, Calogeracos A. Seventy years of the Klein paradox [ J]. Phys Rep, 1999,315 : 41.
  • 7Katsnelsio M I,Novoselov K S,Geim A K. Chiral tunnel- ling and Klein paradox in graphene [ J ]. Nat Phys,2006, 2 : 620-625.
  • 8Huard B,et al. Transport Measurements Across a Tunable Potential Barrier in Graphene [ J ]. Phys Rev Lett,2007, 98 : 236803.
  • 9Weinbert S. The Quantum Theory of fields [ M ]. Cam- bridge University Press, 1995.
  • 10Castro-Neto A,Guinea F,Peres N M R,et al. The elec- tronic properties of grapheme [ J ]. Rev Mod Phys, 2009, 81 : 109.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部