摘要
The nucleonic ~1S_0 superfluidity is investigated by solving the gap equation for the Reid soft-core potential as the nucleon-nucleon interaction in neutron star(NS) matter which is considered to be made up of p, e, μ and condensed antikaon matter. We mainly study the influence of the soft pion-induced potential on the nucleonic^1S_0 pairing gaps in the above NS matter. It is found that the intensities of the nucleonic ~1S_0 pairing gaps including the soft pion-induced potential are smaller than those calculated in the case of not including the soft pion-induced potential. Furthermore, the nucleonic ~1S_0 pairing gaps with the soft pion-induced potential fall into decline with the deepening of the optical potential of antikaons in the above NS matter, whereas they increase with the parameter η for the fixed optical potential of antikaons. Due to the appearance of the soft pion-induced potential, the maximum values of nucleonic ~1S_0 pairing gaps at parameter η = 0.20,0.55 are suppressed by1.7%-6.8% with respect to the case without soft pion-induced potential in the above NS matter.
The nucleonic ~1S_0 superfluidity is investigated by solving the gap equation for the Reid soft-core potential as the nucleon-nucleon interaction in neutron star(NS) matter which is considered to be made up of p, e, μ and condensed antikaon matter. We mainly study the influence of the soft pion-induced potential on the nucleonic^1S_0 pairing gaps in the above NS matter. It is found that the intensities of the nucleonic ~1S_0 pairing gaps including the soft pion-induced potential are smaller than those calculated in the case of not including the soft pion-induced potential. Furthermore, the nucleonic ~1S_0 pairing gaps with the soft pion-induced potential fall into decline with the deepening of the optical potential of antikaons in the above NS matter, whereas they increase with the parameter η for the fixed optical potential of antikaons. Due to the appearance of the soft pion-induced potential, the maximum values of nucleonic ~1S_0 pairing gaps at parameter η = 0.20,0.55 are suppressed by1.7%-6.8% with respect to the case without soft pion-induced potential in the above NS matter.
作者
Yan Xu
Qi-Jun Zhi
Yi-Bo Wang
Xiu-Lin Huang
Wen-Bo Ding
Zi Yu
Cheng-Zhi Liu
许妍;支启军;王夷博;黄修林;丁文波;喻孜;刘承志(Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences;Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing;College of Mathematics and Physics, Bohai University;College of Science, Nanjing Forestry University)
基金
Supported by the Open Foundation of Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing
the Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No 2016056
the Development Project of Science and Technology of Jilin Province under Grant No 20180520077JH
the National Natural Science Foundation of China under Grant Nos 11805022 and 11803057