期刊文献+

适用于直流分布式储能系统的控制策略 被引量:2

A control strategy for the distributed energy storage system for a DC distribution power network
下载PDF
导出
摘要 直流配电系统中分布式储能系统采用电压型下垂控制策略时,分布式储能各个单元之间耦合程度很高,易受线路阻抗的影响,均流效果较差。针对电压型下垂控制策略的不足,本工作提出一种电流型下垂控制策略,分析了关键控制参数的计算方法,实现了分布式储能系统各单元之间线路阻抗解耦。最后,基于理论分析,以储能变换器采用Buck/Boost双向变换器为例,搭建仿真和实验平台,对所提控制策略进行实验验证,实验结果表明,新型电流型下垂控制策略相较于传统电压下垂控制算法具有更好的功率分配效果。 When the voltage type droop control strategy is adopted in a distributed energy storage system for a DC distribution network, the degree of coupling between all the distributed energy storage units becomes very high, which is easily affected by the impedance of the line, and hence poor effect of current sharing. This paper proposes a current type droop control strategy, analyses the calculation method of key control parameters, and the decoupling of the line impedance between all the units of the distributed energy storage system. The experimental results verify the effectiveness of the proposed control strategy.
作者 师长立 韦统振 霍群海 何俊强 张桐硕 SHI Changli;WEI Tongzheng;HUO Qunhai;HE Junqiang;ZHANG Tongshuo(Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100190, China)
出处 《储能科学与技术》 CAS CSCD 2019年第4期654-658,共5页 Energy Storage Science and Technology
基金 国家重点研发计划(2016YFB0900400) 中国科学院战略性先导科技专项(A类)(XDA21050302)
关键词 直流配电系统 分布式储能系统 线路阻抗 阻抗解耦 电流下垂控制策略 distributed energy storage system line impedance impedance decoupling current droop control strategy
  • 相关文献

参考文献3

二级参考文献70

  • 1鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:929
  • 2Xu C D, Cheng K W E. A survey of distributed power system-AC versus DC distributed power system[C]//2011 4th International Conference on Power Electronics Systems andApplications. HongKong, China: IEEE, 2011: 1-12.
  • 3Kondratiev I, Dougal R. Synergetic control strategies for shipboard DC power distribution systems[C]//American Control Conference. New York, USA: American Automatic Control Council (AACC), 2007: 4744-4749.
  • 4Lasseter R H. Smart distribution: coupled microgrids [J]. Proceedings of the IEEE, 2011, 99(6): 1074-1082.
  • 5Stark M R, Tolbert L M, Ozpineci B. AC vs. DC distribution .. a loss comparison[C]//2008 IEEE Transmission and Distribution Conference and Exposition. Bogota, Colombia: IEEE, 2008:1-7.
  • 6Wang. F, Pei Y, Boroyevich D, et al. AC vs. DC distribution for off-shore power delivery[C]//2008 34th Annual Conference of IEEE Industrial Electronics. Orlando, USA: IEEE, 2008: 2113-2118.
  • 7Lago J, Heldwein M L. Operation and control-oriented modeling of a power converter for current balancing and stability improvement of DC active distribution networks [J]. IEEE Transactions on Power Electronics, 2011,26(3): 877-885.
  • 8Boroyevich D, Cvetkovic I, Dong D, et al. Future electronic power distribution systems:a contemplative view[C]//2010 12th International Conference on Optimization of Electrical and Electronic Equipment. Basov, Russia: IEEE, 2010: 1369-1380.
  • 9Baran M E, Mahajan N R. DC distribution for industrial systems: opportunities and challenges[J] . IEEE Transactions on Power Electronics, 2003, 39(6): 1596-1601.
  • 10Alex H, Mariesa L C, Gerald T H, et al. The future renewable electric energy delivery and management system: the energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148.

共引文献593

同被引文献40

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部