期刊文献+

无定形碳包覆锡基负极材料的制备及其电化学性能 被引量:4

Preparation and electrochemical performance of amorphous carbon coated tin-based anode materials
下载PDF
导出
摘要 氧化锡因其较高的理论比容量颇受关注,在电化学研究应用中,与碳材料复合改性后可作为锂离子电池的负极材料。本文选用五水四氯化锡为锡源,氧化石墨烯和葡萄糖作为碳源,采用简单水解法、水热处理,可以大量合成SnO2/C复合材料。通过对产物进行结构的表征、微观形貌的分析及电化学性能测试,结果表明,氧化锡纳米颗粒均匀分散于无定形碳之间,复合材料循环100圈后放电比容量为541mA·h/g。相比于纯SnO2纳米颗粒,无定形碳能够抑制氧化锡的体积效应,提高材料整体的导电性,同时改善材料的循环稳定性。 Tin oxides have attracted much attention as a negative material for lithium-ion batteries due to its high theoretical specific capacity and low cost. In this work, taking tin tetrachloride pentahydrate as tin source and graphene oxide (GO)/C6H12O6 as carbon source, the composite of SnO2 dispersed into amorphous carbon has been synthesized by hydrolysis and carbonization in large scale. The composite structure and morphology of the products are characterized, and the electrochemical properties of the product are analyzed by electrochemical tests. SnO2 nanoparticles are homogeneously dispersed in the matrix of amorphous carbon. After 100 cycles, the discharge capacity of the composite is 541 mA.h.g^-1. Amorphous carbon can effectively suppress the volume change of SnO2 particles during charging/discharging, and improves the conductivity of the composites and the cyclic stability. It leads to an improved electrochemical properties.
作者 徐辉 仰榴青 尹凡 杨刚 XU Hui;YANG Liuqing;YIN Fan;YANG Gang(College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China;School of Chemistry and Material Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China)
出处 《储能科学与技术》 CAS CSCD 2019年第4期732-737,共6页 Energy Storage Science and Technology
关键词 氧化锡 负极材料 循环性能 电化学性能 SnO2 anode materials cycling performance electrochemical performance
  • 相关文献

参考文献3

二级参考文献23

  • 1Scrosati B. Battery technology-challenge of portable pow- er [J]. Nature, 1995, 373: 557-558.
  • 2Ohzuku T, Iuakosi Y, Sawai K. Formation of lithium graphite intercalation compounds in non aqueous electro lytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. J Eleetrochem Soc, 1993, 140: 2490-2498.
  • 3Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed,2008, 47: 2930-2946.
  • 4Lou X W, Chen J S, Chen P, et al. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties[J] Chem Mater, 2009, 21: 2868-2874.
  • 5Chen Y, Huang Q Z, Wang J, et al. Synthesis of mono- dispersed SnOz @ C composite hollow spheres for lithium ion battery anode applications [J]. J Mater Chem, 2011, 21 : 17448-17453.
  • 6Park M S, Wang G X, Kang Y M, et al. Preparation and electrochemical properties of SnOz nanowirees for applica- tion in lithium-ion batteries [J]. Angew Chem Int Ed, 2007, 46: 750-753.
  • 7Yang H X, Qian J F, Chen Z X, et al. Multilayered nanocrystalline SnOa hollow microspheres synthesized by chemically induced sel{-assembly in the hydrothermal en- vironment [J]. J Phys Chem C, 2007, 111: 14067- 14071.
  • 8Han S, Jang B, Kim T, et al. Simple synthesis of hollow tin dioxide microspheres and their application to lithium- ion battery anodes [J]. Adv Funct Mater, 2005, 15: 1845-1850.
  • 9Lin Y S, Duh J G, Huang M H. Shell-by-shell synthe- sis and application of carbon-coated Sn02 hollow nano- spheres in lithium ion battery [J]. J Phys Chem C, 2010, 114: 13136-13141.
  • 10Li N, Martin C R, Scrosati B. A high-rate, high-capaci ty, nanostructured tin oxide electrode [J]. Electrochem Solid-State Lett, 2000, 3: 316-318.

共引文献10

同被引文献43

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部