期刊文献+

基于在线参数辨识和AEKF的锂电池SOC估计 被引量:25

SOC estimation of lithium battery based online parameter identification and AEKF
下载PDF
导出
摘要 SOC的准确估计对提高电池的动态性能和能量利用效率至关重要,估计过程中,模型参数不准确以及系统噪声的不确定性都会对结果产生较大影响。为减小模型参数辨识和系统噪声对SOC估计精度的影响,本文采用二阶RC等效电路模型,结合自适应扩展卡尔曼滤波算法(AEKF)进行锂电池的SOC估计。用带有遗忘因子的最小二乘法对模型参数进行在线辨识,以减小由参数辨识引起的估计误差,AEKF可以对系统和过程噪声进行修正,从而减小噪声对SOC估计的影响。最后分别用EKF和AEKF进行SOC估计并比较其误差,结果表明,AEKF联合最小二乘法参数在线辨识具有更高的精度和更好的适应性。 The accurate estimation of SOC is very important for improving the dynamic performance and energy utilization efficiency of batteries. In the estimation process, the inaccuracy of model parameters and the uncertainty of system noise will greatly affect the results. In order to reduce the influence of model parameter identification and system noise on the SOC estimation accuracy, this paper adopts the second-order RC equivalent circuit model combined with the adaptive extended kalman filter algorithm (AEKF) to estimate the SOC of lithium batteries. In order to reduce the estimation error caused by parameter identification, the least square method with forgetting factoris used to identify the model parameters online. AEKF can correct the system and process noise, so as to reduce the impact of noise on SOC estimation. At last, EKF and AEKF are used for SOC estimation respectively and their errors are compared. The results show that joint AEKF and least square parameter online identification has higher accuracy and better adaptability.
作者 田茂飞 安治国 陈星 赵琳 李亚坤 司鑫 TIAN Maofei;AN Zhiguo;CHEN Xing;ZHAO Lin;LI Yakun;SI Xin(School of Mechatronics & Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
出处 《储能科学与技术》 CAS CSCD 2019年第4期745-750,共6页 Energy Storage Science and Technology
关键词 SOC估计 二阶RC模型 在线参数辨识 扩展卡尔曼滤波 自适应扩展卡尔曼滤波 SOC estimation second order RC model online parameter identification EKF AEKF
  • 相关文献

参考文献1

二级参考文献15

  • 1戴海峰,魏学哲,孙泽昌.基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J].机械工程学报,2007,43(2):92-95. 被引量:44
  • 2Kiessling R.A battery model of monitoring of and corrective action on lead-acid EV batteries[C]//Proceedings of the9th annual battery Conference on Applications and advances,Long Beach,USA,1994.New York,USA:IEEE,1994:191-193.
  • 3Weidner J W,Timmermann P.Effect of proton diffusion,electron conductivity and chargetransfer resistance on nickel hydroxide discharge curves[J].Journal of the electrochemical society(S0013-4651),1994,141(2):346-351.
  • 4Glass M C.Battery electrochemical nonlinear/dynamic SPICE model[C]//Proceedings of the Intersociety Energy Conversion Engineering Conference,Washington DC,USA,1996.New York,USA:IEEE,1996:294-297.
  • 5US Department of Energy.PNGV Battery Test Manual,Revision3[M].Washington,USA:US Department of Energy,2001:D-4.
  • 6INEEL,United States Idaho National Engineering&Environmental Laboratory.Freedom CAR Battery Test manual[M].revision3,Idaho,USA:INEEL,2001:6-30.
  • 7US Department of Energy.USABC electric vehicle Battery Test Procedure Manual[M].Washington,USA:US Department of Energy,1996:10-42.
  • 8Battelle Energy Alliance.Battery Test Manual for Plug-In Hybrid Electric Vehicles,revision0[M].USA:US Department of Energy National Laboratory,2008,(3):22-29.
  • 9张舜长.锂电池模型的实验规划建构与验证.车辆工程学刊,2007,:68-80.
  • 10Minxin Zheng.Dynamic Model for Characteristics of Li-ion Battery on electric vehicle[C]//Proceedings of ICIEA2009,May,2009,Xi’an,China.New York,USA:IEEE,2009:2967-2870.

共引文献55

同被引文献186

引证文献25

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部