摘要
从演化博弈视角分析了重大工程项目中利益主体业主与承包商的行为博弈,建立了复制动态方程,对方程引入白噪声来反映演化过程受到的随机干扰,建立了随机动力系统,借鉴Ito随机微分方程来分析博弈双方的策略演化,给出了策略稳定的充分条件,并进行了仿真分析.研究表明:在随机扰动下,当决策主体采取积极风险管理的成本小于补偿成本与分担成本之和时,决策双方的策略会上下波动,最终演化至稳定策略积极风险管理;当决策主体采取积极风险管理的成本大于补偿成本与分担成本之和时,积极风险管理策略不稳定,决策双方会倾向于采取消极风险管理.
The evolutionary game between the owner and contractor of the major project is analyzed, and the dynamic equation of replication is established. Taking into account the interference in the evolution process, the Gaussian white noise is introduced to reflect the random disturbance. The stochastic dynamic system is established and the stability of the strategy is analyzed by stochastic differential equation theory, after that a sufficient condition of stability is given. At last, to validate the correctness of the model, the paper simulates two scenarios based on our proposed models. The study shows that under random disturbance,when the cost of active risk management is less than the sum of compensation cost and sharing cost, the strategy of both parties will fluctuate up and down, and eventually evolves to the positive risk management of the stable strategy;When the cost of active risk management is greater than the cost of compensation and the cost sharing, the positive risk management strategy is unstable, and both sides tend to adopt negative risk management.
作者
苗军霞
黄德春
张长征
MIAO Jun-xia;HUANG De-chun;ZHANG Chang-zheng(Business School, Hohai University, Nanjing 211100, China;College of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046, China;Hohai Industrial Economics Institute, Nanjing 211100, China)
出处
《数学的实践与认识》
北大核心
2019年第10期106-113,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(71573072)
国家自然科学青年基金(71603070)
国家社会科学基金(14BSH021)
关键词
演化博弈
重大工程
Ito随机微分方程
稳定性
evolutionary game
major projects
stochastic differential equation
stability