期刊文献+

On textile biomedical engineering 被引量:1

On textile biomedical engineering
原文传递
导出
摘要 The demand for advanced fiber biomaterials and medical devices has risen rapidly with the increasing of aging population in the world. To address this grand societal challenge, textile biomedical engineering(TBE) has been defined as a holistic and integrative approach of designing and engineering advanced fiber materials for fabricating textile structures and devices to achieve various functions such as drug delivery, tissue engineering and artificial implants, pressure therapy and thermal therapy,bioelectric/magnetic detection and stimulation for the medical treatment and rehabilitation of human body. TBE is multidisciplinary in nature and needs integration of cross disciplinary expertise in medical science, healthcare professionals, physiologists, scientists and engineers in chemistry, materials, mechanics, electronics, computing, textile and designers. Engineering fiber materials and designing textile devices for biomedical applications involve the integration of the fundamental research in physics, chemistry, mathematics, and computational science with the development of engineering principles and understanding on the relationship between textile materials/devices and human physiology, behaviour, medicine and health. Theoretical concepts have been advanced together with creating new knowledges created from molecules to cells, organs and body-textile systems, and developing advanced fiber materials, innovative textile devices and functional apparel products for healthcare,comfort, protection against harmful external environment, diseases prevention, diagnosis and treatment, as well as rehabilitations. A holistic, integrative and quantitative approach has been adopted for deriving the technical solutions of how to engineer fibers and textiles for the benefits of human health. This paper reviews the theoretical foundations for textile biomedical engineering and advances in the recent years. The demand for advanced fiber biomaterials and medical devices has risen rapidly with the increasing of aging population in the world. To address this grand societal challenge, textile biomedical engineering(TBE) has been defined as a holistic and integrative approach of designing and engineering advanced fiber materials for fabricating textile structures and devices to achieve various functions such as drug delivery, tissue engineering and artificial implants, pressure therapy and thermal therapy,bioelectric/magnetic detection and stimulation for the medical treatment and rehabilitation of human body. TBE is multidisciplinary in nature and needs integration of cross disciplinary expertise in medical science, healthcare professionals, physiologists, scientists and engineers in chemistry, materials, mechanics, electronics, computing, textile and designers. Engineering fiber materials and designing textile devices for biomedical applications involve the integration of the fundamental research in physics, chemistry, mathematics, and computational science with the development of engineering principles and understanding on the relationship between textile materials/devices and human physiology, behaviour, medicine and health. Theoretical concepts have been advanced together with creating new knowledges created from molecules to cells, organs and body-textile systems, and developing advanced fiber materials, innovative textile devices and functional apparel products for healthcare,comfort, protection against harmful external environment, diseases prevention, diagnosis and treatment, as well as rehabilitations. A holistic, integrative and quantitative approach has been adopted for deriving the technical solutions of how to engineer fibers and textiles for the benefits of human health. This paper reviews the theoretical foundations for textile biomedical engineering and advances in the recent years.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第6期945-957,共13页 中国科学(技术科学英文版)
基金 supported by the Smart Textile Materials and Products National Key Laboratory(cultivating) Xi’an Polytechnic University with a special international collaboration grant the EU Horizon 2020 programme(Grant Nos.761122&644268)
关键词 BIOMATERIALS fibers TEXTILE BIOMEDICAL engineering healthcare SMART FUNCTIONS NANO biomaterials fibers textile biomedical engineering healthcare smart functions nano
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部