期刊文献+

基于改进的人工神经网络对存储系统性能进行预测的方法 被引量:4

Method of Predicting Performance of Storage System Based on Improved Artificial Neural Network
下载PDF
导出
摘要 测量和评估网络存储系统的性能是用户和企业普遍关心的重点问题之一,因BP神经网络具有强大的非线性映射能力,文中提出了一种利用改进的BP神经网络实现对网络IO性能进行预测的方法。改进的主要内容包括:1)利用马尔科夫链进行预测,更新输出层输出;2)当算法选择概率达到一定值后,利用人工蜂群算法对权值进行优化。最后模拟预测模型的实现过程,将预测结果与传统的BP神经网络进行对比。实验结果证明:该算法能够在基本不增加算法运行时间的情况下提高存储性能预测的求解精度和收敛速度。 Measuring and evaluating the performance of network storage system is one of the key problems to users and corporations.For the strong nonlinear mapping function of the BP-ANN,a new improved algorithm for network I/O performance prediction was proposed by improved BP-ANN,and the new algorithm includes two aspects.Firstly,Mar-kov Chain is used to forecast and update the output of output layer.Secondly,the artificial bee colony algorithm is used to optimize the weights when the probability of algorithm selection reaches a certain value.The implementation process of evaluation model was simulated,and the results were compared with BP-ANN.The experimental results show that the presented approach can significantly improve the solution accuracy and convergence speed of evaluating the performance of network storage system almost without increasing the running time.
作者 郭佳 GUO Jia(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;National Secrecy Science and Technology Evaluation Center,Beijing 100044,China)
出处 《计算机科学》 CSCD 北大核心 2019年第B06期52-55,共4页 Computer Science
关键词 存储系统 BP神经网络 马尔科夫链 人工蜂群算法 Storage systems BP-ANN Markov chain ABC
  • 相关文献

参考文献6

二级参考文献61

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2黄永青,梁昌勇,杨善林,陆青.基于一种加速收敛变异策略的交互式遗传算法[J].系统仿真学报,2007,19(9):1913-1916. 被引量:7
  • 3BARVE R,SHRIVER E,GIBBONS P B.Modeling and optimizing I/O throughput of multiple disks on a bus[A].Proceedings of Sigmetrics '98/Performance '98[C].New York:ACM Press,1998.264-275.
  • 4LU Y P,DAVID H C D.Performance study of iscsi-based storage subsystems[J].IEEE Communications Magazine,2003,41(8):76-82.
  • 5HE X B,BEEDANAGARI P,ZHOU D.Performance evaluation of distributed ISCSI RAID[A].Proceedings of the 2003 IEEE/ACM International Workshop on Storage Network Architecture and Parallel I/O (SNAPI'03)[C].New Orleans,LA,USA,2003.
  • 6WEE T N,HILLYER B K,SHRIVER E.Obtaining high performance for storage outsourcing[A].Proceedings of Conference on File and Storage Technologies (FAST '02)[C].Monterey,California,2002.145-158.
  • 7ZHU Y L,ZHU S Y,XIONG H.Performance analysis and testing of the storage area network[A].19th IEEE Symposium on Mass Storage Systems and Technologies[C].Maryland,USA,2002.
  • 8LAZOWSKA E D,ZAHORJAN J,GRAHAM G S,et al.Quantitative System Performance:Computer System Analysis Using Queueing Network Models[M].Englewood Cliffs,NJ:Prentice-Hall,1984.
  • 9KARABOGA O. An idea based on honey bee swarm for numerical op- timization[ D] Kayseri,Turkey Ereiyes University'.2005,.
  • 10KARABOGA D, BASTURK B. A/tificial bee colony (ABC) optimi- zation algorithm for solving constrained optimization problems[ C ]// Proce of the 12th !ntemati0nal Fuzzy Sstems Association World Con- gress on Foundations of Fuzzy Logic and Soft Computing. 2007:789- 798. ' :.

共引文献81

同被引文献53

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部