期刊文献+

基于混合卷积神经网络的静态手势识别 被引量:7

Static Gesture Recognition Based on Hybrid Convolution Neural Network
下载PDF
导出
摘要 静态手势识别在人机交互方面具有重要的应用价值,但手势背景的复杂性和手势形态的多样性给识别的准确性带来了一定的影响。为了提高手势识别的准确率,文中提出了一种基于卷积神经网络(Convolution Nenral Network,CNN)与随机森林(Random Forest,RF)的识别方法。该方法首先对静态手势的图片进行手势分割,然后利用卷积网络的特征提取功能提取特征向量,最后使用随机森林分类器对这些特征向量进行分类。一方面,卷积神经网络具有分层学习的能力,能够收集图片上更具代表性的信息;另一方面,随机森林对样本和特征选择具有随机性,并且对每个决策树结果进行了平均,不易出现过拟合问题。在静态手势数据集上进行验证,实验结果显示:所提方法能有效地对静态手势进行识别,平均识别率能够达到94.56%。文中进一步将所提方法与几种经典的特征提取方法(主成分分析(PCA)和局部二进制(LBP))进行对比,实验结果显示:相比于PCA和LBP特征提取方法,由CNN提取的特征向量进行分类识别的效果更好,该方法的识别率比PCA-RF方法高2.44%,比LBP-RF方法高1.74%。最后,在经典的MNIST数据集上进行验证,所提方法的识别率达到了97.9%,高于其他两种传统的特征提取方法。 Static gesture recognition has caught special attention for its great application value in man-machine interaction.At the same time,the accuracy of gesture recognition is affected by the complexity of gesture background and the diversity of gesture morphology in a certain extent.In order to improve the accuracy of gesture recognition,a method was proposed,which is based on convolutional neural network(CNN)and random forest(RF).Firstly,the image of the static gesture is segmented,then the feature extraction function of convolution network is used to extract feature vectors,and finally the random forest classifier is used to classify these feature vectors.On the one hand,the CNN has the ability of layered learning and is able to collect more representative information on the picture.On the other hand,random forest shows randomness for samples and feature selection,meanwhile,it can be avoided easily that the results of each decision tree is averaged over fitting problem.This paper verified by using the static gesture data set,and the experimental results show that the proposed method can effectively identify the static gestures and achieve an average recognition rate of 94.56%.The method proposed in this paper was further compared with principal component analysis(PCA)and partial binary(LBP).The experimental results show that the classification and recognition effect with feature extraction by CNN is better than PCA and LBP.The recognition rate is 2.44%higher than that of PCA-RF method and 1.74%higher than that of LBP-RF method.Finally,the recognition rate of the proposed method reaches 97.9%,which is higher than the other two traditional feature extraction methods.
作者 石雨鑫 邓洪敏 郭伟林 SHI Yu-xin;DENG Hong-min;GUO Wei-lin(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出处 《计算机科学》 CSCD 北大核心 2019年第B06期165-168,共4页 Computer Science
基金 国家自然科学基金(61174025)资助
关键词 卷积神经网络 随机森林 静态手势 识别 Convolutional neural network Random forest Static gesture Recognition
  • 相关文献

参考文献1

二级参考文献12

  • 1KYIZHEUSKY A, SUTSKEVER I, HINTON G E, et al. Image Net Classification with Deep Convolutional Neural Networks [C] //Neural Information Processing Systems Conference. Nevada: Neural Information Processing Systems Foundation, 2012: 1106-1114.
  • 2DAN C, UELI M, JURGEN S. Multi-column Deep Neural Networks for Image Classification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3642-3649.
  • 3KAVUKCUOGLU K, SERMANET P, BOUREAU Y, et al. Learning Convolutional Feature Hierarchies for Visual Recognition [C]//Advances in Neural Information Processing Systems Workshops. Real Hook: Neural Information Processing System Foundation, 2010: 1090-1098.
  • 4KAVUKCUOGLU K, RANZATO M, FERGUS R, et al. Learning Invariant Features through Topographic Filter Maps [C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Computer Society, 2009: 1605-1612.
  • 5ZEILER M D, FERGUS R. Visualizing and Understanding Convolutional Neural Networks [C]//European Conference on Computer Vision. Berlin: Springer International Publishing, 2014: 818-833.
  • 6LEE H, GROSSE R, RANGANATH R, et al. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representation[C]//Proceedings of the 26th International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 7BURGES C J C, PLATT J C, JANA S, et al. Distortion Discriminant Analysis for Audio Fingerprinting [J].IEEE Transactions on Speech and Audio Processing, 2003, 11(3): 165-174.
  • 8LECUN Y, BOTTOU L, BENGIO Y. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 2008, 86 (11): 2278-2324.
  • 9NEUBAUER C. Evaluation of Convolutional Neural Networks for Visual Recognition[J].IEEE Transactions on Neural Networks, 1998, 11(4): 685-696.
  • 10JARRETT K, KAVUKCUOGLU K, RANZATO M A, et al. What is the Best Multi-stage for Object Architecture?[C]//Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 2146-2153.

共引文献25

同被引文献47

引证文献7

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部