摘要
针对不同天气情况下同一太阳位置拍摄的室外场景图像,提出了一种无需用户交互的快速估计室外光照参数的算法。该算法首先通过K-means算法检测阴影区域来获取初始天空光参数,同时使用Grey-World算法获取初始太阳光参数,进而进行基图像求解,并利用白平衡修正对基图像进行校正,从而迭代优化出更准确的光照参数。实验数据表明,所提算法得到的重构图像比现有算法得到的重构图像误差更小。与现有算法相比,该算法更为快速、方便,且准确性更高,可以很好地应用于增强现实。
This paper proposed a fast algorithm for estimating outdoor illumination parameters without user interaction for outdoor scene images taken from the same sun position under different weather conditions.K-means algorithm is used to detect the shadow area to obtain the initial sky light parameters,and Grey-World algorithm is used to obtain the initial sun light parameters.Then the base image is solved,and the white balance correction is used to correct the base image,so as to iteratively optimize the illumination parameters more accurately.Experimental results show that the reconstructed image obtained by the proposed algorithm has less error than the reconstructed image obtained by the exi-sting algorithm.Compared with the existing algorithms,the proposed algorithm is faster,more convenient and more accurate.So it can be well applied to augmented reality.
作者
方靖
张锐
崔巍
韩慧健
FANG Jing;ZHANG Rui;CUI Wei;HAN Hui-jian(School of Computer Science and Technology,Shandong University of Finance and Economics,Jinan 250014,China;Shandong Province Research Center of Information Visualization and Computational Economy Engineering Technology,Jinan 250014,China;Information Center of Ministry of Science and Technology,Beijing 100862,China)
出处
《计算机科学》
CSCD
北大核心
2019年第B06期211-214,221,共5页
Computer Science
基金
国家自然科学基金项目(61303089,61472221,61772309)资助
关键词
光照估计
灰度世界算法
白平衡修正
Illumination estimation
Grey-world
White balance correction