摘要
针对人脸表情迁移生成图像质量不高、训练过程较长且生成速度较慢的问题,文中提出了一种基于生成式对抗网络的人脸表情迁移方法,使表情迁移更加快速和自然。首先,利用卷积神经网络进行人脸特征提取,并将图像从高维空间映射到浅层空间,在浅层空间中利用生成式对抗网络模型对人脸表情特征进行判别;然后,通过最近邻上采样层和卷积层组合结构将图像从浅层空间映射到高维空间,并在此过程中通过加入表情标签特征图对人脸表情进行改变。与FaderNetworks相比,所提方法的网络模型参数量减少43.7%,训练时间缩短了36%。实验结果表明,所提方法有效地提高了人脸表情迁移生成图像的速度和质量。
In order to solve the problems of low image quality,long training process and slow generation speed of face expression transfer,this paper proposed a facial expression transfermethod based on generative adversarial network to make expression transfer faster and more natural.Firstly,the facial features are extracted by using convolutional neural network,and the images are mapped from high-dimensional space to shallow space.In the shallow space,the facial expression features are discriminated by using the Generative Adversarial Networks.Then the nearest neighbors up-sampling and convolutional neural networks are used to mapthe image from the shallow space to the high-dimensional space,and in this process,the face expression is changed by adding the facial expression feature maps into neural networks.Compar ed with Fader Networks,the network model parameter amount of the proposed method is reduced by 43.7%and training time is reduced by 36%.The experimental results show that the proposed method can effectively improve the quality and the speed of generated images.
作者
刘剑
金泽群
LIU Jian;JIN Ze-qun(Faculty of Information and Control Engineering,Shenyang Jianzhu University,Shenyang 110168,China)
出处
《计算机科学》
CSCD
北大核心
2019年第B06期250-253,共4页
Computer Science
基金
国家自然科学基金(61272253)
辽宁省自然科学基金(201602616)
辽宁省教育厅科学研究项目(L2015443)
住建部项目(2015-K2-015)资助
关键词
人脸表情迁移
生成式对抗网络
计算机视觉
深度学习
Face expression transfer
Generative adversarial networks
Computer vision
Deep learning