期刊文献+

基于SPCA和HOG的单样本人脸识别算法 被引量:8

Face Recognition Using SPCA and HOG with Single Training Image Per Person
下载PDF
导出
摘要 基于单样本的人脸识别是一项充满挑战性的任务。文中结合Similar Principal Component Analysis(SPCA)算法与Histograms of Oriented Gradients(HOG)算法,利用SPCA筛选出图像类的相似信息,用HOG算法对相似的信息块进行特征量化,使二者优势互补。最后利用Pearson correlation(PC)进行相似性判别,在数据库Extended Yale B database上进行实验,结果表明,在光照变化的情况下,该算法对人脸正面图像的识别性能比传统算法好。 Face recognition based on single sample is a challenging task.This paper combined the Similar Principal Component Analysis(SPCA)algorithm and Histograms of Oriented Gradients(HOG)algorithm,and used SPCA to screen out the similar information of the image class,and quantified the similar information blocks with HOG algorithm to make the two advantages complementary.Finally,we used Pearson correlation(PC)to identify similarity and conduct experiments on the Extended Yale B database.Experimental results show that the proposed algorithm has better recognition performance than traditional algorithm when the illumination of the face image changes.
作者 韩旭 谌海云 王溢 许瑾 HAN Xu;CHEN Hai-yun;WANG Yi;XU Jin(School of Electrical Engineering and Information,Southwest Petroleum University,Nanchong,Sichuan 637001,China;School of Electronic and Information Engineering,Liaoning University of Engineering and Technology,Huludao,Liaoning 125105,China)
出处 《计算机科学》 CSCD 北大核心 2019年第B06期274-278,283,共6页 Computer Science
基金 南充市校科技战略合作专项项目(NC17SY4011)资助
关键词 人脸识别 SPCA HOG Pearson correlation(PC) Face recognition Similar principal component analysis(SPCA) Histograms of oriented gradients(HOG) Pearson correlation(PC)
  • 相关文献

参考文献6

二级参考文献28

  • 1肖冰,王映辉.人脸识别研究综述[J].计算机应用研究,2005,22(8):1-5. 被引量:53
  • 2CHEN Yee-ming, CHIANG Jen-hong. Fusing multiple fea- tures for fourier mellin-based face recognition with single example image per person[J]. Neurocomputing, 2010,73 (16-18) :3089-3096.
  • 3Vu N S. Exploring patterns of gradient orientations and magnitudes for face recognition[J]. IEEE Transactions on Information Forensics and Security,2013,8(2) :295-304.
  • 4Gad Tao,Feng X L, Lu H. A novel face feature descriptor using adaptively weighted extended LBP pyramid[J]. Op- tik, 2013,124(23) : 6286-6291.
  • 5Jabid T, Kabir M H, Chae O. Local directional pattern (LDP) for face recognition r-A]. Proc. of International Conference on Consumer Electronics. Las Vegas: IEEE Press, 2010,329-330.
  • 6ZHANG Tai-ping,TANG Yuan-yan, FANG Bin, et al. Face recognition under varying illumination using gradientfaces [J]. IEEE Transactions on Image Processing, 2009, ]8 (11) :2599-2606.
  • 7CHEN Xi,ZHANG Jia-shu. Illumination robust single sam- ple face recognition using multi-directional orthogonal gradient phase faces[J]. Neurocomputing, 2011,74 (14) : 2291-2298.
  • 8Rivera A R,Castillo J R,Chae O. Local directional num- ber pattern for face analysis:face and expression recog- nition[J]. IEEE Transactions on Image Processing, 2013, 22(5) :1740-1752.
  • 9YANG Meng, ZHANG Lei, ZHANG Lin, et al. Monogenic Binary Pattern(MBP) :a novel feature extraction and rep- resentation model for face recognitionEA]. Proc. of the 20th IEEE International Conference on Pattern Recogni- tion. Piscataway, NJ :IEEE Press, 2010,2680-2683.
  • 10XlE Shu-fu,SHAN Shi-guang,OHEN Xi-lin et al. Fusing lo- cal patterns of gabor magnitude and phase for face rec- ognition. IEEE Transactions on Image Processing, 2010,19(5):1349-1361.

共引文献93

同被引文献76

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部