摘要
随着互联网技术的发展,信息过载问题日益严重,推荐系统是缓解该问题的有效手段。针对协同过滤中因数据稀疏和冷启动导致的推荐效率低下问题,提出基于SVD填充的混合推荐算法。首先,采用奇异值分解技术分解项目评分矩阵,通过随机梯度下降法填充稀疏矩阵;然后,在矩阵中加入时间权重,优化用户相似度,同时在项目矩阵中加入Jaccard系数优化项目相似度;接着,综合基于项目和基于用户的协同过滤计算预测评分,从而选择最优项目;最后,在MovieLens和Jester数据集中将所提算法与传统算法进行实验对比,证明了所提算法的有效性。
With the development of Internet technology,the issue of information overload is becoming increasingly se-rious.The recommendation system is an effective means to alleviate this problem.Focusing on the problem of low recommendation efficiency caused by sparse data and cold start in collaborative filtering,this paper proposed a hybrid recommendation algorithm based on SVD filling.Firstly,Singular Value Decomposition technique is used to decompose the user-item score matrix,and sparse matrix is filled by stochastic gradient descent method.Secondly,time weights are added to optimize the user similarity in the user matrix.At the same time,Jaccard coefficients are added to optimize the item similarity in the item matrix.Then,item-based and user-based collaborative filtering are combined to calculate prediction scores and select the optimal project.Finally,the proposed algorithm is compared with other existing algorithms on Movielens and Jester data set,and the result of experiments verifies that the effectiveness of the proposed algorithm.
作者
刘晴晴
罗永龙
汪逸飞
郑孝遥
陈文
LIU Qing-qing;LUO Yong-long;WANG Yi-fei;ZHENG Xiao-yao;CHEN Wen(School of Computer and Information,Anhui Normal University,Wuhu,Anhui 241002,China;Anhui Provincial Key Laboratory of Network and Information Security,Anhui Normal University,Wuhu,Anhui 241002,China)
出处
《计算机科学》
CSCD
北大核心
2019年第B06期468-472,共5页
Computer Science
基金
国家自然科学基金项目(61672039,61772034)
安徽省自然科学基金项目(1808085MF172)资助
关键词
推荐系统
协同过滤
奇异值分解
填充矩阵
时间权重
Recommendation system
Collaborative filtering
Singular value decomposition
Fill matrix
Time weight