期刊文献+

基于自适应样本权重的矩阵分解推荐算法 被引量:4

Matrix Factorization Recommendation Algorithm Based on Adaptive Weighted Samples
下载PDF
导出
摘要 稀疏数据矩阵缺失值估计是一项必要的基础性研究,在推荐系统中尤为重要,针对该问题的一种有效方法便是矩阵分解算法(Matrix Factorization,MF),但传统MF算法仅直接使用回归思想拟合矩阵样本点,并没有考虑样本自身拟合难易程度的差异性。针对该情况,文中分析提出了一种基于自适应样本权重的矩阵分解算法(AWS-MF),在原有MF算法的基础上,针对样本差异性进行有偏向模型拟合,为增加模型回归的准确性与稳定性,加权整合中间算法结果,从而得到最终的拟合数据值。实验结果表明,相比于MF算法和NMF算法,改进后的AWS-MF算法能根据样本差异性自动调整样本权重占比,在充分利用已有数据的前提下,最终得到更好的缺失值估计结果。 Missing value estimation of sparse matrix is a necessary basic research,which is also particularly important and significant in some practical applications,such as the recommendation system.There are many methods to solve this problem,one of the most effective method to tackle this issue is Matrix Factorization(MF).However,the traditional MF algorithm has some limitations,which can only directly simulate the elements of the sparse matrix by using regression method.But it did not take into account the sample itself,which has different difficulty in regression and should be treated respectively.According to this limitation,this paper proposed a matrix factorization recommendation algorithm based on adaptive weighted samples(AWS-MF).Based on the traditional MF algorithm,the proposed method exploits the differences among the training samples and treats each sample in a bias weights.In order to improve the performance and robustness of our model,the intermediate results are combined together in the final process to obtain the objective predictions.To verify the superiority of the proposed method,the comprehensive experiments were conducted on the real-world data sets.The experiment results demonstrate that the proposed AWS-MF algorithm is able to adaptively re-weight samples according to the differences among them.Moreover,treating the samples respectively can lead to a promising performance in the real-world applications compared to the baseline methods.
作者 石晓玲 陈芷 杨立功 沈伟 SHI Xiao-ling;CHEN Zhi;YANG Li-gong;SHEN Wei(Taizhou Polytechnic College,Taizhou,Jiangsu 225300,China)
出处 《计算机科学》 CSCD 北大核心 2019年第B06期488-492,共5页 Computer Science
基金 2016年泰州职业技术学院院级重点科研项目(TZYKY-16-3)资助
关键词 矩阵分解 缺失值估计 推荐系统 样本差异性 偏向性 Matrix Factorization(MF) Missing value estimation Recommendation system Sample differences Bias
  • 相关文献

参考文献5

二级参考文献123

  • 1陈卫刚,戚飞虎.可行方向算法与模拟退火结合的NMF特征提取方法[J].电子学报,2003,31(z1):2190-2193. 被引量:6
  • 2LlU Weixiang ZHENG Nanning YOU Qubo.Nonnegative matrix factorization and its applications in pattern recognition[J].Chinese Science Bulletin,2006,51(1):7-18. 被引量:22
  • 3Wu J L.Collaborative filtering on the Netflix prize dataset[D/EB]. http://dsec.pku.edu.cn/jinlong/.
  • 4Ricci F, Rokach L, Shapira B, et al.Recommender system hand- book[M].[S.l.] : Springer, 2011.
  • 5Adomavicius G, Tuzhilin A.Toward the next generation of rec- ommender systems:a survey of the state-of-the-art and possible extenstions[J].TKDE, 2005,17 (6): 734-749.
  • 6Bell R,Koren Y,Volinsky C.The bellkor 2008 solution to the Netflix prize[R].2007.
  • 7Paterek A.Improving regularized singular value decomposition for collaborative filtering[C]//KDD-Cup and Workshop.[S.l.]: ACM Press, 2007.
  • 8Lee D D,Seung H S.Learning the parts of objects by non-nega- tive matrix factorization[J].Nature,401:788-791.
  • 9Pan R, Zhou Y, Cao B,et al.One-class collaborative filtering[C]// IEEE International Conference on Data Mining(ICDM),2008.
  • 10Pan R,Martin S.Mind the Gaps:weighting the unknown in large- scale one-class collaborative filtering[C]//Intemational Conference on Knowledge Discovery and Data Mining(KDD),2009.

共引文献531

同被引文献47

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部