期刊文献+

考虑软件运行的软-硬件退化系统剩余寿命估计 被引量:1

Remaining Useful Life Estimation Model for Software-Hardware Deteriorating Systems with Software Operational Conditions
下载PDF
导出
摘要 针对软-硬件系统级剩余寿命估计难题,传统的研究方法都是单独考虑了软件可靠性或硬件可靠性,而忽略了软件与硬件之间的交互影响。文中基于硬件性能退化过程提出了一种将软件的使用或运行看作是系统的一种外部冲击的新方法。该方法通过硬件性能退化指标来表征软件运行对系统的影响,主要采用离散隐Markov过程来描述两者之间的关系。具体地,对信号数据采用信号分解与特征提取技术得到性能退化指标,运用隐Markov模型构建隐含状态与实际退化之间的对应关系。根据在不同软件运行条件下系统性能退化指标样本中的拐点个数,对同一硬件退化过程分段构建不同的退化模型,使模型更加精确地描述退化过程。采用随机仿真技术与优化技术对硬件剩余寿命进行估计,根据系统体系结构估计软-硬件系统的剩余寿命。利用某武器装备系统的性能监测数据,将所提算法与传统系统级剩余寿命估计模型(BP神经网络)进行对比,证明了所提算法具有较高的估计精度。 For the estimation problem of theremaining useful life(RUL)of the software-hardware system-level,the traditional research methods consider software reliability or hardware reliability separately,and ignore the interaction effect between them.This paper proposed a new method of considering the use or operation of software as an external impact of the system based on the hardware performance degradation process.This method uses hardware performance degradation indicators to characterize the impact of software operations on the system.Discrete-time hidden Markov processes are mainly used to describe the relationship between them.Specifically,signal degradation and feature extraction techniques are applied to signal data to obtain performance degradation indicators.Hidden Markov models are used to construct the correspondence relation between implied states and actual degradation.According to the number of inflection points in the system performance degradation indicators under different software operating conditions,different degradation models are built on the same hardware degradation process,so that the model describesthe degradation process more accurately.Stochastic simulation technology and optimization technology are used to estimate,the RUL of the hardware,and according to the system architecture,the RUL of the software-hardware system is estimated.Using the performance monitoring data of a certain weapon equipment system,this paper compared the proposed algorithm with the traditional system-level RUL estimation model(BP neural network),and proved that the proposed algorithm has higher estimation accuracy.
作者 韩佳佳 张德平 HAN Jia-jia;ZHANG De-ping(College of Computer Science and Technology,Nanjing University of Aeronautics & Astronautics,Nanjing 210016,China)
出处 《计算机科学》 CSCD 北大核心 2019年第B06期511-517,531,共8页 Computer Science
基金 国防重点项目资金(JCKY2016206B001) 国防一般项目(JCKY2014206C002)资助
关键词 软-硬件系统 剩余寿命估计 离散隐Markov过程 退化模型 Software-Hardware system Remaining useful life estimation Discrete-time hidden Markov process Degradation model
  • 相关文献

参考文献5

二级参考文献35

  • 1BAIN L J. Statistical analysis of reliability and life-testing models[M]. New York: Marcel Dekker, 1978.
  • 2FRIEDMAN M A, TRAN P. Reliability techniques for combined hardware/software systems [C]. Proceedings of Annual Reliability and Maintainability Symposium, 1992: 290-293.
  • 3GOEL A L, OKUMOTO K. A Markovian model for reliability and other performance measures of software systems[C]. Proceedings of the National Computer Conference, 1979 : 769-774.
  • 4HECHT H, HECHT M. Software reliability in the system context [J]. IEEE Transactions on Software Engineering, January, 1986, 12(1):51-58.
  • 5IYER R K. Hardware-related software errors: measurement and analysis [J]. IEEE Transactions on Software Engineering, February, 1985,11(2):223-230.
  • 6PARZEN E. Stochastic processes [M]. San Francisco, CA: Holden-Day, 1962.
  • 7PHAM H, Software reliability [M]. New York: Springer, 2000.
  • 8WELKE S R, JOHNSON B W, AYLOR J H. Reliability modeling ofhardware/software systems [J]. IEEE Transactions on Reliability, September, 1995, 44(3) :413-418.
  • 9Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proc IEEE, 1989,77(2):257-286.
  • 10Rabiner LR. An introduction to hidden Markov models [J]. IEEE ASSP Magazine, 1986,3(1) : 4-16.

共引文献93

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部