期刊文献+

基于元胞自动机的交通流状态研究 被引量:3

Research on Traffic Flow State Based on Cellular Automata
下载PDF
导出
摘要 为方便交通部门能够更直接地掌握道路交通流状态,对交通流进行管理、调节和诱导,从而提高路网交通效率,本文主要围绕交通流状态统计、交通流状态仿真和不同交通状态的决策方案三个方面进行研究。研究基于物理公式和格林希尔治模型理论构建交通流流量与车辆平均速度的基础模型,根据不同道路的最大流量判断道路交通状态;利用matlab将道路简化为元胞自动机的运动过程进行分析;并根据交通流状态分析结果提出合理的决策方案。 In order to facilitate the traffic department to more directly grasp the state of road traffic flow, manage, regulate and induce traffic flow to improve road network traffic efficiency, this paper will focus on traffic flow state statistics, traffic flow state simulation and decision-making schemes for different traffic states. Three aspects of research. Based on the physical formula and Greenhill's model theory, we will construct the basic model of traffic flow and vehicle average speed, and judge the road traffic state according to the maximum flow rate of different roads. Then we use Matlab to simulate the motion process of cars on roads. Finally, we propose a reasonable decision-making plan based on the analysis of traffic flow state.
作者 黄何瑶静 黎婷 Huanghe Yaojing;Li Ting(Chongqing University Construction Management and Real Estate College, Chongqing 400045)
出处 《城市公共交通》 2019年第5期40-45,共6页 Urban Public Transport
关键词 交通流状态 MATLAB仿真 元胞自动机 Traffic flow state matlab simulation cellular automaton
  • 相关文献

参考文献1

二级参考文献32

  • 1RICE J, ZWETE V. A simple and effective method for predicting travel times on freeways[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(3): 200-207.
  • 2HORVITZE J, APACIBLE J, SARIN R, et al. Prediction, expectation, and surprise: Methods, designs, and study of a deployed traffic forecasting service[C]//Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence. Edinburgh: [s.n.], 2005: 275-283.
  • 3STEPHANEDES Y J, MICHALOPOULOS P G, PLUM R A. Improved estimation of traffic flow for real-time control[C]//Proceedings of The 60th Annual Meeting of the Transportation Research Board. Washington: Transportation Research Board, 1981: 28-39.
  • 4DOUGHERTY M S, KIRBYHR, BOYLE R D. The use of neural networks to recognizeand predict trafficcongestion[J]. Trafic Engineering and Control, 1993, 34(6): 311-314.
  • 5CHINGWK, FUNG E S, NG MK. A multivariate Markov chain model for categorical data sequences and its applications in demand predictions[J]. IMA Journal of Management Mathematics, 2002,13(3): 187-199.
  • 6CHING W K, FUNG E S, NG MK. Higher-order Markovchain models for categorical data sequences[J]. Naval Research Logistics, 2004, 51(4): 557-574.
  • 7CHING W K, SIU T, LI L. An improved parsimonious multivariate Markov chain model for credit risk[J]. Journal of Credit Risk, 2009, 5(1): 1-25.
  • 8CHING W K. Iterative methods for queuing and manufacturing systems[M]. London: Springer, 2001.
  • 9CHING W K. A higher-order Markov model for the newsboy's problem[J]. Journal of Operational Research Society, 2003, 54: 291-298.
  • 10CHING W K, FUNG E S, NG MK. Higher-order hidden Markov models with applications to DNA sequences[C]//Intelligent Data Engineering and Automated Learning. Heidelberg: Springer, 2003: 535-539.

共引文献11

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部