期刊文献+

基于快速SBL的双基地ISAR成像 被引量:6

Bistatic ISAR Imaging Based on Fast SBL Algorithm with Sparse Apertures
下载PDF
导出
摘要 针对稀疏孔径条件下双基地ISAR成像分辨率低、运算时间长等问题,提出了一种基于快速稀疏贝叶斯学习的高分辨成像算法。首先,建立基于压缩感知的双基地ISAR稀疏孔径回波模型,然后将整个二维回波数据进行分块处理,并假设目标图像各像元服从高斯先验,建立稀疏贝叶斯模型,再利用快速边缘似然函数最大化方法求解得到高质量目标图像,最后将所求的每块回波对应的目标图像合成整个二维图像。由于采取了分块处理,在每块图像重构时减少了数据存储量和计算量。另外,相比于传统的稀疏贝叶斯学习求解方法,本文所提快速算法在保证重构质量的同时进一步缩短了运算时间,仿真实验验证了算法的有效性和优越性。 Aiming at solving the problems of energy leakage and low resolution in bistatic inverse synthetic aperture radar(ISAR)imaging with sparse apertures,a high-resolution imaging algorithm based on fast sparse Bayesian learning(SBL)is proposed in this paper.First,the sparse echo model is established based on the compressive sensing theory.Then the whole two-dimensional data is divided into several blocks,and assuming that each pixel of the target image obeys Gaussian prior to establish the SBL model.Then the fast marginal likelihood maximization method is used to reconstruct the target image of each block.Finally,the whole image is synthesized by the target image corresponding to each block echo.Due to the block processing,the data storage and computation are reduced in each block image reconstruction.In addition,compared with the traditional SBL methods,the proposed fast method guarantees the quality of reconstruction while shortening the computation time.The validity and superiority of the algorithm are verified by the simulation experiments.
作者 朱晓秀 胡文华 郭宝锋 郭城 ZHU Xiaoxiu;HU Wenhua;GUO Baofeng;GUO Cheng(Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003,China;Huayin Ordance Test Centre,Huayin 714200,China)
出处 《雷达科学与技术》 北大核心 2019年第3期289-298,共10页 Radar Science and Technology
基金 国家自然科学基金(No.61601496)
关键词 双基地逆合成孔径雷达 稀疏孔径 稀疏贝叶斯学习 快速边缘似然函数最大化 bistatic inverse synthetic aperture radar(ISAR) sparse apertures sparse Bayesian learning(SBL) fast marginal likelihood maximization
  • 相关文献

参考文献2

二级参考文献7

共引文献10

同被引文献30

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部