期刊文献+

基于深度学习的复杂沙漠背景SAR目标检测 被引量:10

SAR Target Detection in Complex Desert Background Images Based on Deep Learning
下载PDF
导出
摘要 SAR目标检测,因成像场景大、背景复杂多变而极具挑战。传统基于恒虚警率的SAR目标检测方法极易受背景干扰。针对上述问题,提出一种基于深度学习的复杂沙漠背景SAR目标端对端检测识别系统。即采用小规模沙漠背景下的SAR图像数据对Faster-RCNN网络进行迁移训练,一体化完成典型目标的检测与识别。基于合成数据集Desert-SAR的试验结果表明,与传统方法相比,该方法检测速度更快、准确率更高、鲁棒性更强。 Target detection in synthetic aperture radar(SAR)image is a challenge due to the large-scale and complex imaging scene.The classical methods based on CFAR are sensible to imaging scene.Aiming at this problem,we propose an end-to-end target detection method for SAR image in desert scene based on deep learning.That is,the transfer learning is employed to adjust the Faster-RCNN network for optical image to the SAR image.Experimental results of the Dessert-SAR data set show that the proposed method can achieve faster detection speed,higher accuracy and robustness compared with the classical ones.
作者 夏勇 田西兰 常沛 蔡红军 XIA Yong;TIAN Xilan;CHANG Pei;CAI Hongjun(The 38th Research Institute of China Electronics Technology Group Corporation,Hefei 230088,China;Key Laboratory of Aperture Array and Space Application,Hefei 230088,China)
出处 《雷达科学与技术》 北大核心 2019年第3期305-309,318,共6页 Radar Science and Technology
关键词 深度学习 沙漠背景 合成孔径雷达 目标检测 deep learning desert background synthetic aperture radar target detection
  • 相关文献

参考文献4

二级参考文献11

共引文献76

同被引文献130

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部