摘要
SAR目标检测,因成像场景大、背景复杂多变而极具挑战。传统基于恒虚警率的SAR目标检测方法极易受背景干扰。针对上述问题,提出一种基于深度学习的复杂沙漠背景SAR目标端对端检测识别系统。即采用小规模沙漠背景下的SAR图像数据对Faster-RCNN网络进行迁移训练,一体化完成典型目标的检测与识别。基于合成数据集Desert-SAR的试验结果表明,与传统方法相比,该方法检测速度更快、准确率更高、鲁棒性更强。
Target detection in synthetic aperture radar(SAR)image is a challenge due to the large-scale and complex imaging scene.The classical methods based on CFAR are sensible to imaging scene.Aiming at this problem,we propose an end-to-end target detection method for SAR image in desert scene based on deep learning.That is,the transfer learning is employed to adjust the Faster-RCNN network for optical image to the SAR image.Experimental results of the Dessert-SAR data set show that the proposed method can achieve faster detection speed,higher accuracy and robustness compared with the classical ones.
作者
夏勇
田西兰
常沛
蔡红军
XIA Yong;TIAN Xilan;CHANG Pei;CAI Hongjun(The 38th Research Institute of China Electronics Technology Group Corporation,Hefei 230088,China;Key Laboratory of Aperture Array and Space Application,Hefei 230088,China)
出处
《雷达科学与技术》
北大核心
2019年第3期305-309,318,共6页
Radar Science and Technology
关键词
深度学习
沙漠背景
合成孔径雷达
目标检测
deep learning
desert background
synthetic aperture radar
target detection