期刊文献+

基于Lasso方法的污染气体自适应探测算法 被引量:10

Adaptive Feature Extraction Algorithm Based on Lasso Method for Detecting Polluted Gas
原文传递
导出
摘要 在开放光路条件下,污染气体与大气成分的光谱特征相互混叠,难以直接对污染气体进行识别。提出了一种自适应特征提取算法,预先生成各种大气条件下的光谱特征,利用Lasso算法进行快速特征优选,选择最优目标/背景组合重构背景光谱,提取目标特征。为了验证所提算法的有效性,开展了不同背景下的甲烷遥测实验、不同相对湿度条件下的氨气遥测实验,以及室内近距离乙烯探测实验。将所提算法与Harig算法进行对比,结果表明:所提算法能更好地扣除背景,具有较强的实用性。 Under the open light path condition, the spectral characteristics of polluted gases and atmospheric components are overlapped, making it difficult to directly identify the polluted gases. This study proposes an adaptive feature extraction method, which pre-generates the spectral features under various atmospheric conditions. The rapid feature extraction is performed using the Lasso algorithm for selecting the optimal target-background combination, reconstructing the background spectrum, and extracting the target features. The effectiveness of the proposed algorithm is verified via the methane remote detection under different backgrounds;the ammonia gas detection is also performed under different relative humidity conditions along with the indoor close-range ethylene detection. The proposed method is compared with the Harig's method. The results show that the proposed method can well eliminate background and possesses strong practicability.
作者 崔方晓 李大成 吴军 王安静 李扬裕 Cui Fangxiao;Li Dacheng;Wujun;Wang Anjing;Li Yangyu(Anhui Institute of Optics and Fine Mechanics, Anhu-i Hefei Institutes of Physical Science,Chinese Academy of Sciences, Hefei, Anhui 230031, China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第5期398-406,共9页 Acta Optica Sinica
基金 国家自然科学基金(41505020) 国家高技术研究发展计划(CXJJ-16S006)
关键词 遥感 自适应 Lasso算法 亮温光谱 remote sensing adaptive Lasso algorithm brightness temperature spectrum
  • 相关文献

参考文献3

二级参考文献33

  • 1方勇华,荀毓龙.微弱光谱信号的探测与识别[J].红外技术,1997,19(1):21-25. 被引量:6
  • 2Chein-I Chang. IEEE Transactions On Geoscience And Remote Sensing, 2005,43(3): 502.
  • 3Manolakis D, Jairam L G, Zhang D, et al. Proc. of SPIE, 2007, 6565:656525.
  • 4Lan Tian-ge, Fang Yonghua, Xiong Wei, et al. Chinese Optics Letters, 2007, 5(10): 613.
  • 5Vincent Mazet, Cedric Carteret, David Brie, et al. Chemometrics and Intelligent Laboratory Systems, 2005, 6(2): 121.
  • 6Takeshi Hasegawa. Trends in Analytical Chemistry, 2001, 20(2): 53.
  • 7Takeshi Hasegawa, Jujiro Nishijo, Junzo Umemura. Chemical Physics Letters, 2000, 317(6): 642.
  • 8Alok Sharma, Kuldip K. Paliwal. Pattern Recognition Letters, 2007, 28(10): 1151.
  • 9Andreas Beil, Rainer Daum, Roland Harig, et al. Proc. of SPIE, 1998, 3493: 32.
  • 10Roland Harig, Gerhard Matz. Field Analytical Chemistry And Technology, 2001, 5(1-2): 75.

共引文献8

同被引文献67

引证文献10

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部