期刊文献+

Optimized coagulation pretreatment alleviates ultrafiltration membrane fouling: The role of floc properties and slow-mixing speed on mechanisms of chitosan-assisted coagulation 被引量:3

Optimized coagulation pretreatment alleviates ultrafiltration membrane fouling: The role of floc properties and slow-mixing speed on mechanisms of chitosan-assisted coagulation
原文传递
导出
摘要 To alleviate ultrafiltration(UF) membrane fouling, the pre-coagulation of poly-aluminum chloride(PACl) with the aid of chitosan(CTS) was conducted for synthetic humic acid–kaolin water treatment. Pre-coagulation of three molecular weights(MW) CTSs(50–190 kDa(CTSL), 190–310 kDa(CTSM) and 310–375 kDa(CTSH)) was optimized with slow-mixing speeds of 30, 60 and 90 r/min, respectively. The removal efficiency and floc properties as well as membrane fouling were analyzed, and were compared to results obtained by conventional coagulation with PACl. Results showed that variations in floc properties could be ascribed to the coagulation mechanisms of CTS_L/CTS_M/CTS_H at different slow-mixing speeds, resulting in reduced UF membrane fouling. Specifically, at the low speed of 30 r/min, all three CTS types produced flocs with similar properties, while CTSLresulted in the lowest removal efficiency and aggravated irreversible fouling. At the appropriate speed of 60 r/min, CTSMgenerated the most compact flocs with the combined effects of bridging and path mechanisms. The compact cake layer formed could alleviate irreversible fouling,which was beneficial for prolonging the operation of the UF membrane. At the high speed of90 r/min, CTSHformed fragile flocs and aggravated irreversible membrane fouling. We considered membrane fouling to be affected by floc properties and the resultant removal efficiency, which was governed by the MW of the CTS used and the slow-mixing speed applied as well. To alleviate ultrafiltration(UF) membrane fouling, the pre-coagulation of poly-aluminum chloride(PACl) with the aid of chitosan(CTS) was conducted for synthetic humic acid–kaolin water treatment. Pre-coagulation of three molecular weights(MW) CTSs(50–190 kDa(CTSL), 190–310 kDa(CTSM) and 310–375 kDa(CTSH)) was optimized with slow-mixing speeds of 30, 60 and 90 r/min, respectively. The removal efficiency and floc properties as well as membrane fouling were analyzed, and were compared to results obtained by conventional coagulation with PACl. Results showed that variations in floc properties could be ascribed to the coagulation mechanisms of CTS_L/CTS_M/CTS_H at different slow-mixing speeds, resulting in reduced UF membrane fouling. Specifically, at the low speed of 30 r/min, all three CTS types produced flocs with similar properties, while CTSLresulted in the lowest removal efficiency and aggravated irreversible fouling. At the appropriate speed of 60 r/min, CTSMgenerated the most compact flocs with the combined effects of bridging and path mechanisms. The compact cake layer formed could alleviate irreversible fouling,which was beneficial for prolonging the operation of the UF membrane. At the high speed of90 r/min, CTSHformed fragile flocs and aggravated irreversible membrane fouling. We considered membrane fouling to be affected by floc properties and the resultant removal efficiency, which was governed by the MW of the CTS used and the slow-mixing speed applied as well.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第8期82-92,共11页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(No.51478010)
关键词 Coagulation–ultrafiltration Membrane fouling FLOC PROPERTIES Chitosan Slow-mixing SPEED Coagulation–ultrafiltration Membrane fouling Floc properties Chitosan Slow-mixing speed
  • 相关文献

参考文献1

二级参考文献1

共引文献3

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部