摘要
文章对半监督三分类光滑支持向量机进行研究。首先,针对二叉树结构的分类顺序对分类精度影响的问题,提出采用基于类间相似方向数生成偏二叉树支持向量机的方法判别分类顺序。其次,将此判别方法应用于半监督三分类中,提出了基于类间相似方向数的半监督三分类光滑支持向量机算法。最后,进行五组数值试验。结果表明,与全监督三分类算法相比,本文算法得到的准确率相对要高,且能在已标记样本比例较少的情况下得到较高的准确率,从而表明了本文的半监督二叉树三分类光滑支持向量机具有优越性。
This paper makes a study on the semi-supervised tri-classification smooth support vector machine. Firstly,aiming at the influence of classification order of binary tree structure on classification accuracy,this paper proposes a method of generating partial binary tree support vector machine based on the number of similar directions between classes. Secondly,the paper applies this method to semi-supervised tri-classification to present a semi-supervised tri-classification smooth support vector machine algorithm based on the number of similar directions between classes. Finally,five sets of numerical experiments are carried out. The results show that compared with the fully supervised tri-classification algorithm,the proposed algorithm in the paper has relatively higher accuracy,and can get high accuracy when the proportion of marked samples is small,thus indicating that the proposed semi-supervised binary tree tri-classification smooth support vector machine has advantages.
作者
王建建
何枫
Wang Jianjian;He Feng(Donlinks School of Economics and Management,University of Science and Technology Beijing,Beijing 100083,China)
出处
《统计与决策》
CSSCI
北大核心
2019年第11期27-31,共5页
Statistics & Decision
基金
国家自然科学基金资助项目(71673022)
教育部科学技术战略研究资助项目(2015KJW02)
教育部科技技术委员会战略研究资助项目(GX2015-1008(Y))
中央高校基本科研业务费专项资金资助项目(FRF-BR-16-002A)
北京市社会科学基金资助项目(17LJB004)
关键词
二叉树
半监督支持向量机
类间相似方向数
三次样条函数
binary tree
semi-supervised support vector machine
inter-class number of similar direction
cubic spline function