期刊文献+

基于电力日志特征的DBSCAN聚类 被引量:4

DBSCAN Clustering Based on Power Log Characteristics
下载PDF
导出
摘要 针对电力系统海量日志导致难以进行人工分类的问题,文章根据电力日志的结构化特征,通过建立日志的特征向量,再使用DBSCAN来对日志进行聚类。以国网甘肃省电力公司日志作为数据集,使用该方法进行了检验。与专家人工分类的对比结果表明,该方法聚类结果与专家分类结果一致,且聚类的类簇中数目误差率小于0.3%。同时,从轮廓系数和Rand指数2个指标来看,DBSCAN聚类方法也能较好地适应该数据集。聚类的结果能够有效减少电力系统运维人员的检查工作量。 In view of the difficulty of manual classification caused by massive logs in power system, according to the structural characteristics of power logs, this paper uses DBSCAN to cluster logs by establishing the feature vector of logs. The logs of State Grid Gansu Electric Power Company was used as the data set for testing. The comparison with expert classification shows that the clustering results of this method are consistent with the expert classification results, and the number error rate in the clusters is less than 0.3%. At the same time, from the two indicators of contour coefficient and Rand index, DBSCAN clustering method can also adapt to the data set. The results of clustering can effectively reduce the inspection workload of power system operation and maintenance personnel.
作者 袁昊 金铭 邱昱 李兴 YUAN Hao;JIN Ming;QIU Yu;LI Xing(Information and Communication Corporation,State Grid Gansu Electric Power Company,Lanzhou 730050,China)
出处 《电力信息与通信技术》 2019年第5期68-72,共5页 Electric Power Information and Communication Technology
关键词 电力日志 特征向量 DBSCAN 聚类 power log feature vector DBSCAN clustering
  • 相关文献

参考文献7

二级参考文献89

共引文献147

同被引文献65

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部