摘要
随着互联网信息的快速增长,传统的检索技术已经无法满足用户快速及准确的访问信息的要求。现有的个性化应用推荐方法几乎都是依赖用户的搜索日志、点击日志或用户自身提供的标签来标识用户的兴趣(或称之为用户模型),然后依据此兴趣特征向用户推荐信息。本论文期望从用户间的特征相互关注这一角度入手,将用户的兴趣点予以全面挖掘,进而向用户推荐感兴趣的信息。基于此想法,本论文提出一种图推荐模型,该模型以用户和商品作为结点,并依据图中结点的分布情况计算每个结点的集中性以作为将某个项目推荐给用户的概率。该图推荐模型可以结合用户间的相互关注情况向用户推荐其感兴趣的商品,同时可以利用商品之间的相关性向用户推荐相关的商品。实验结果显示,该推荐模型无论在准确率上还是在运行效率上都优于传统的推荐模型。
With the fast development of Internet information,traditional retrieving techniques can no longer satisfy customers needs of quickly and precisely visiting desirable information.The present individualized recommendation methods mostly rely on the searching log,clicking log or the tags provided by users themselves to identify users’characteristics(or namely,user model).Then these characteristics are adopted to help guide recommendation.This paper hopes to start with the viewpoint of mutual following between users,which can fully explore the users’interests,and then recommend the information interested by users.Based on this idea,this paper proposes a graph based recommendation model.It combines users and items to form nodes,and calculate the centrality of each node via the distribution of nodes.The centrality is treated as the probability of recommending users in one node to the item in the same node.The proposed graph based recommendation model presented by this paper first considers the interests and preferences of the mutual following between users for recommending desirable product needed by users,and at the same time it can make use of the correlation between commodity recommend related products to users.Experimental results show that the proposed model is superior to the traditional recommendation model both in terms of accuracy and efficiency.
作者
陈蕾
刘铭
CHEN Lei;LIU Ming(Department,University,City post code, State;Department,University,City post code, State)
出处
《系统工程》
CSSCI
北大核心
2019年第2期21-29,共9页
Systems Engineering
基金
国家自然科学基金资助课题“结合用户间相互关注的个性化APP图推荐模型研究”(编号:61772156)
关键词
图推荐模型
用户间的相互关注
结点集中性
相关性
Graph Based Recommendation Model
Mutual Following between Users
Node Centrality