期刊文献+

边界约束最大p区域问题及其启发式算法 被引量:1

Boundary-Constrained Max-p-Regions Problem and Its Heuristic Algorithm
原文传递
导出
摘要 针对城市空间内的自动化分区,顾及空间域边界对于分区结果的约束效应,提出一种边界约束最大p区域问题。在最大化区域个数p前提下,针对单元与多个边界交叉产生的单元从属不确定性,设计一种顾及空间单元从属不确定度的单元差异性加权目标函数。并在满足阈值约束等最大p区域问题原有约束下,增加若干边界约束,保证形成的区域一般在某个边界之内,若需跨越多个边界,则需涵盖整个边界。针对该非确定性多项式难题设计并实现一种基于禁忌搜索的启发式算法,并在模拟数据和实际数据集上进行实验。实验结果表明,该方法可以使科研和实验人员能够将现实世界中的边界约束灵活地加入到分区问题的模型中,以对最大p区域问题的求解结果进行更为实际的控制。 The boundary-constrained max-p-regions problem is proposed to tackle the automatic regionalization problem in urban space with respect to constraining regions by boundaries. On the premise of maximized the number of regions p, a weighted objective function considering the subordinate uncertainfy of spatial elements is designed to deal with the subordinat uncertainty caused by the intersectiou of elements and multiple boundaries. Besides a threshold constraint and other constraints in the max-p-regions problem, several boundary constraints are incorporated as well. A region would normally be within a certain boundary. If a region crosses boundaries, these boundaries must be encompassed by the region. A Tabu-search based heuristic algorithm is designed and implemented to solve this NP-hard problem. The effectiveness are evaluated through a simulation dataset and a real-world dataset. The results show that the proposed model allows researchers and practitioners flexibly incorporate boundary constraints in real-world problems into the model specification, thus exerts more practical control over the regionalization results.
作者 樊亚新 朱欣焰 呙维 佘冰 FAN Yaxin;ZHU Xinyan;GUO Wei;SHE Bing(State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, Wuhan University, Wuhan 430079, China;Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China;Institute for Social Research, University of Michigan, Ann Arbor MI 48106, United States)
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2019年第6期859-865,共7页 Geomatics and Information Science of Wuhan University
基金 国家重点研发计划(2016YFB0502204) 测绘遥感信息工程国家重点实验室专项科研经费 武汉大学测绘遥感信息工程国家重点实验室重点开放基金(4201420100041)~~
关键词 最大p区域问题 边界约束 空间邻接 区域化 启发式算法 max-p-regions problems boundary constraints spatial contiguity regionalization heuristic algorithm
  • 相关文献

参考文献6

二级参考文献59

  • 1张正峰,陈百明.土地整理分区研究——以北京市大兴区为例[J].农业工程学报,2005,21(z1):123-126. 被引量:27
  • 2黎夏,伍少坤.面向对象的地理元胞自动机[J].中山大学学报(自然科学版),2006,45(3):90-94. 被引量:16
  • 3Ricca F, Simeone B. Political Districting: Traps, Criteria. Algorithms, and Trade-Offs[J]. Ricerca Operativa, 1997, 27:81-119.
  • 4Ricca F, Simeone B. Local Search Algorithms for Political Districting[J]. European Journal of Opera- tional Research, 2007,148 : 1-18.
  • 5Kalesies J, Nickel S, Schroder M. Towards a Unified Territory Design Approach: Applications, Algorithms and GIS Integration[R]. Berichte des Fraunhofer ITWM, Kaiserslautern, Germany, 2005.
  • 6di Cortona P G, Manzi C, Pennisi A, et al. Evaluation and Optimization of Electoral Systems[M].Philadelphia: Society for Industrial and Applied Mathematics, 1999.
  • 7Bozkaya B, Zhang J, Erkut E. An Efficient Genetic Algorithm for the p-median Problem [M]//Hamacher H W. Facility Location: Applications and Theory. Berlin: Springer, 2002.
  • 8Bozkaya B. Political Districting: a Tabu Search Algorithm and Geographical Interfaces[D]. Canada: University of Alberta, 1999.
  • 9Bozkaya B, Erkut E, Laporte G. A Tabu Search Heuristic and Adaptive Memory Procedure for Political Districting[J]. European Journal of Operational Research,2003, 144:12-26.
  • 10Bong C W, Wang Y C. A Multi-objective Hybrid Metaheuristic for Zone Definition Procedure[J]. International Journal of Services Operations and Informaties, 2006,1(1/2) :146-164.

共引文献71

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部