期刊文献+

冲击诱导CL-20/TNT含能共晶初始分解机制 被引量:2

Initial Decomposition Mechanism of Shock-Induced Energetic Co-Crystal CL-20/TNT
下载PDF
导出
摘要 采用ReaxFF反应力场分子动力学方法,同时结合活塞加载模拟了0.8~4.0 km/s撞击速度下CL-20/TNT含能共晶的物理化学过程。冲击波入射至CL-20/TNT共晶中,随着冲击波强度的增加,初始反应路径主要分为3种:当u p=0.8 km/s,冲击压缩作用下CL-20聚合形成二聚体,无CL-20和TNT分解;当u p介于1.0~2.0 km/s,CL-20聚合和分解同时存在,并且聚合和分解的程度随着冲击波强度的增加而增加,但聚合过程占主导;当压缩区压力高于爆轰压力后,冲击引发CL-20/TNT共晶直接分解占主导作用,NO 2的数量明显增多并快速增加,而二聚体的数量逐渐减少。冲击引发CL-20/TNT共晶反应起爆的初始分解路径为CL-20中N-NO2键的断裂,另外,采用冲击雨贡纽关系计算得到CL-20/TNT共晶冲击起爆压力为11.15 GPa。CO2,N2,H2O为支撑能量释放的主要产物,并且,N2首先形成,H2O和CO2随后产生。 ReaxFF reactive force field molecular dynamics was used to simulate the initial chemical events of energetic co-crystal CL-20/TNT under the impact velocity of 0.8-4.0 km/s by using piston loading.When the shock waves propagated into CL-20/TNT,the initial reaction paths were mainly divided into three types with the increase of shock wave intensity:in the case of u p=0.8 km/s,CL-20 molecules were directly dimerized to form dimers,and no CL-20 molecule decomposition and no reaction in TNT.When the impact velocity is between 1.0 km/s and 2.0 km/s,CL-20 molecules dimerization and decomposition exist simultaneously,and the degree of dimerization and decomposition increases gradually,but dimerization process dominates.At impact velocity of 1.5 km/s,the TNT molecules begin to decompose.When the pressure of the compression zone is higher than the detonation pressure,the impact induced CL-20/TNT co-crystal direct decomposition is dominant,and the amount of NO 2 increases rapidly,while the number of dimers decreases gradually.The initial decomposition path of shock induced CL-20/TNT co-crystal reaction initiation is the N-NO 2 bond breaking in CL-20 molecule.In addition,the shock initiation pressure of CL-20/TNT co-crystal is 11.15 GPa.CO 2,N 2 and H 2O are the main final products,and N 2 is first formed,and H 2O and CO 2 are subsequently generated.
作者 刘海 李毅 陈鸿 马兆侠 周智炫 LIU Hai;LI Yi;CHEN Hong;MA Zhaoxia;ZHOU Zhixuan(Hypervelocity Impact Research Center, China Aerodynamics Research andDevelopment Center, Mianyang 621000, China)
出处 《兵器装备工程学报》 CAS 北大核心 2019年第6期186-191,共6页 Journal of Ordnance Equipment Engineering
基金 十三五装备预研领域基金项目(6140656020204)
关键词 含能共晶 反应力场 冲击波 分子动力学 分解机制 energetic co-crystal reactive force filed shock wave molecular dynamics decomposition mechanism
  • 相关文献

参考文献2

二级参考文献35

  • 1王军,董海山,黄奕刚,李金山.3,4-二氨基呋咱基氧化呋咱的制备及晶体结构研究[J].化学学报,2006,64(2):158-162. 被引量:14
  • 2李海波,聂福德,李金山,程碧波.2,6-二氨基-3,5-二硝基吡嗪-1-氧化物的合成及其晶体结构[J].合成化学,2007,15(3):296-300. 被引量:15
  • 3SikderA. K, Sikder N. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military ans space application [J].J Hazard Mater, 2004, 112 (2) : 1 -15.
  • 4Fischer N, Karaghiosoff K, KlapOtkeTM, etal. New energetic materials featuring tetrazoles and nitramines-synthesis, character- ization and properties[J]. Z Amorg AIIg Chem, 2010, 636(4) : 735 -749.
  • 5Van der Heijden A E, Bouma R H B. Crystallization and charac- terization of RDX, HMX, and CL-20 [J]. Crys Growth Des, 2004, 4(5): 999 -1007.
  • 6Kim C K, Lee B C, Lee Y W, et al. Solvent effect on particle morphology in recrystallization of HMX using supercritical carbon dioxide as antisolvent[J]. Korean J Chem Eng Technol, 2009, 26(4): 1125-1129.
  • 7Kim K I, Kim H S. Coating of energetic materials using crystalli- zation[J]. Chem Eng Technol, 2005, 28(8): 946 -951.
  • 8Bond A D. What isacocrystal?[J]. CrystEngComm, 2007, 9 (4) : 833 -834.
  • 9Dunitz J D. Crystal and co-crystal: a second opinion[J]. Cryst Eng Comm, 2003, 5(2) : 506 -507.
  • 10Weyna D R, ShattockT, Zaworotko MJ. Robustsupramolecular heterosynthons in chiral ammonium carboxylate salts[J]. Cryst Growth Des, 2008, 8(4) : 1106 -1109.

共引文献32

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部