期刊文献+

基于极速学习的Choquet模糊积分分类器

Choquet fuzzy integral classifier based on extreme learning machine
下载PDF
导出
摘要 在交互环境下,模糊积分分类器具有良好的分类性能.如何确定在属性集幂集上定义的模糊测度是模糊积分分类器中的一个关键问题.当属性的个数增加时,计算复杂度呈指数级增长.为了解决这一问题,借鉴极速学习机算法中权重向量随机确定的思想,提出了ELM-Choquet模糊积分分类器.实验结果表明,和Choquet模糊积分分类器相比,该算法具有较优的分类性能. In the interactive environments,fuzzy integral classifier has shown its good classification performance. A key problem in the fuzzy integral classifier is to determine the fuzzy measure defined in the power set of attributes. The computational complexity increases exponentially as the number of attributes increases. In order to solve the problem, drawing lessons from the idea of random determination of weight vector in extrem learning machine algorithm, this paper puts forward an ELM-Choquet fuzzy integral classifier. The experiment result shows that compared with the Choquet fuzzy integral classifier, this algorithm has better classification performance.
作者 陈爱霞 张春琴 CHEN Aixia;ZHANG Chunqin(Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, College of Mathematics and Information Science, Hebei University, Baoding 071002, China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2019年第4期337-341,共5页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(61672205) 河北省教育厅青年基金资助项目(QN2018161)
关键词 模糊测度 模糊积分 CHOQUET模糊积分 极速学习机 遗传算法 fuzzy measure fuzzy integral Choquet fuzzy integral classifier extreme learning machine genetic algorithm
  • 相关文献

参考文献3

二级参考文献85

  • 1SUGENO M. Theory of fuzzy integrals and its applications[D]. Tokyo: Tokyo Institute of Technology, 1974.
  • 2SUGENO M, MUROFUSHI T. Choquet integral as an integral form for a general class of fuzzy measures[Z]. Tokyo, Proceedings of Second IFSA Congress, 1987.
  • 3JAMES M KELLER, PAUL GADER, HOSSEIN TAHANI, et al. Advances in fuzzy integration for pattern recognition [J]. Fuzzy Sets and Systems, 1994, 65:273 -283.
  • 4GRABISCH M, SUGENO M. Multi-attribute classification using fuzzy integral[Z]. San Diego, 1st IEEE International Conference on Fuzzy Systems, 1992.
  • 5GRABISCH M, NICOLAS J M. Classification by fuzzy integral: performance and tests[J]. Fuzzy Sets and Sytems, 1994, 65:255-271.
  • 6WANG Zhenyuan, LEUNG KWONG-SAK, WANG Jia. A genetic algorithm for determining nonadditive set functions in information fusion[J]. Fuzzy Sets and Systems, 1999,102:463 - 469.
  • 7WANG Jia, WANG Zhenyuan. Using neural networks to determine Sugeno measures by statistics[J]. Neural Networks, 1997, 10(1) :183 - 1997.
  • 8JAMES M KELLER, JEFFREY OSBORN. Training the fuzzy integral[J]. International Journal of Approximate Rea- soning, 1996, 15:1-24.
  • 9WANG Xizhao, HE Yulin, DONG Lingeai, et al. Particle swarm optimization for determining fuzzy measures form data [J]. Information Science, 2001,181(19) :4230 - 4252.
  • 10WANG Zhenyuan, GEORGE J KLIR. Fuzzy measure theory[M]. New York: A division of Plenum Publishing Corporation,1992.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部