期刊文献+

度量Hom-3-李代数的结构

Structure of metric Hom-3-Lie algebras
下载PDF
导出
摘要 定义了度量Hom-3-李代数及乘法度量Hom-3-李代数,并对其基本结构进行了研究.证明了任意一个度量Hom-3-李代数都可以分解为其不可约理想的直和,且每个不可约理想分别是不可约的度量Hom-3-李代数.利用度量3-李代数的代数同态及型心中的元素分别构造了度量Hom-3-李代数及乘法度量Hom-3-李代数. The definitions of the metric Hom-3-Lie algebra and the metric multiplicative Hom-3-Lie algebra are introduced, and their basic structures are studied.It is proved that every metric Hom-3-Lie algebra can be decomposed into the direct sum of non-degenerate irreducible ideals which are irreducible metric Hom-3-Lie algebra.And metric Hom-3-Lie algebra and the metric multiplicative Hom-3-Lie algebra are constructed by the metric Hom-3-Lie algebras.
作者 范素军 刘桂然 刘冬艳 FAN Sujun;LIU Guiran;LIU Dongyan(School of Medical Imaging, Hebei Medical University, Shijiazhuang 050017, China)
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2019年第4期342-346,共5页 Journal of Hebei University(Natural Science Edition)
基金 河北省教育厅科学研究计划项目(Z2015010)
关键词 3-李代数 度量3-李代数 度量Hom-3-李代数 乘法度量Hom-3-李代数 3-Lie algebra metric 3-Lie algebra metric Hom-3-Lie algebra metric multiplicative Hom-3-Lie algebra
  • 相关文献

参考文献3

二级参考文献23

  • 1Ammar F, Mabrouk S, Makhlouf A. Representations and cohomology of n-ary multi- plicative Hom-Nambu-Lie algebras. J Geom Phys, 2011, 61(10): 1898-1913.
  • 2Ataguema H, Makhlouf A, Silvestrov S. Generalization of n-ary Nambu algebras and beyond. J Math Phys, 2009, 50(8): 083501.
  • 3Azcarraga J, Izquierdo J. n-ary algebras: a review with applications. J Phys A, 2010, 43(29): 293001.
  • 4Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev, 2008, D77(6): 065008.
  • 5Bai R, Bai C, Wang J. Realizations of 3-Lie algebras. J Math Phys, 2010, 51(6): 063505.
  • 6Bai R, Li Y. T-Extensions of n-Lie Algebras. ISRN Algebra, 2011, V2011, doi: 10.5402/2011/381875.
  • 7Bai R, Li Y, Wu W. Extensions of n-Lie algebras. Sci Sin Math, 2012, 42(6): 1-10 (in Chinese).
  • 8Bai R, Wang J, Li Z. Derivations of the 3-Lie algebra realized by gl(n, C). 3 Nonlinear Math Phys, 2011, 18(1): 151-160.
  • 9Baxter R. Partition function for the eight-vertex lattice model. Ann Physics, 1972, 70: 193-228.
  • 10Baxter R. Exactly Solved Models in Statistical Mechanics. London: Academic Press, 1982.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部