摘要
利用幂比较法证明了:①当a为正偶数、b为正奇数时,不定方程a^x-b^y=1最多有1组正整数解(x,y);②方程x^y-(x-1)^z=1仅有正整数解(x,y,z)=(1,s,t),(2,1,t),(r,1,1)和(3,2,3),其中r,s,t为任意正整数且r≥3.同时推出不定方程2^x-3^y=1仅有正整数解(x,y)=(2,1),不定方程2018^x-2019^y=1无正整数解以及不定方程3^x-2^y=1仅有正整数解(x,y)=(1,1),(2,3).
It has been proven by the power of comparative method that:① if a is positive even and b is positive odd, then the equation a^x-b^y =1 has at most one positive integer solution;② the equation x^y-(x-1)^ z =1 has only the positive integer solutions (x,y,z)=(1,s,t),(2,1,t),(r ,1,1) and (3,2,3),where r , s and t are arbitraty positive integers, with r ≥3. In addition, the equation 2^x-3^y =1 has only positive integer solution (x,y )=(2,1), the equation 2 018^x-2 019^y =1 has no positive integer solution, and the equation 3^x-2^y =1 has only positive integer solutions ( x,y )=(1,1),(2,3).
作者
管训贵
GUAN Xungui(School of Mathematics and Physics,Taizhou University,Taizhou 225300,China)
出处
《河南教育学院学报(自然科学版)》
2019年第2期7-9,共3页
Journal of Henan Institute of Education(Natural Science Edition)
基金
国家自然科学基金(11471144)
江苏省自然科学基金(BK20171318)
泰州学院教博基金(TZXY2018JBJJ002)
关键词
幂比较法
不定方程
正整数解
组合数
同余
comparative method of power
Diophantine equation
positive integer solution
combination number
congruence