期刊文献+

900t移梁机吊具设计与优化

Design and Optimization of 900t Beam Spreader
下载PDF
导出
摘要 本文对已有的900t移梁机双线梁吊具进行分析,阐述了吊具存在的吊取范围小、变换吊杆位置不方便等问题。提出了通孔式吊具的方法,并将其应用于单线梁的吊取,再通过对吊具进行相应的计算和有限元分析,验证了此方法在不影响安全的情况下,进一步提高其适用范围的可行性,望本文可以对类似的改良设计提供参考。 This paper analyzes the two-wire beam spreader of existing 900 t beam-shifting machine, and expounds the problems of small lifting range and inconvenient change of the boom. The method of through-hole spreader is put forward and applied to the lifting of single-line beam. Then the corresponding calculation and finite element analysis of the spreader are carried out to verify that the method can further improve the feasibility of the scope of application without affecting safety, to provide a reference for similar improved design.
作者 乐锋 LE Feng(The 3rd Engineering Co.,Ltd. of China Railway 17 Bureau Group Corporation,Shijiazhuang 050000,China)
出处 《价值工程》 2019年第18期285-288,共4页 Value Engineering
关键词 受力分析 改善措施 通孔式吊具有限元分析 force analysis improvement measures limit element analysis of through-hole spreader
  • 相关文献

参考文献2

二级参考文献25

  • 1刘书田,贾海朋,王德伦.狭长结构拓扑优化[J].计算力学学报,2004,21(6):653-657. 被引量:12
  • 2黄旌,高涛.ANSYS用于机翼有限元分析的建模研究[J].红河学院学报,2006,4(2):8-11. 被引量:18
  • 3荣见华,傅建林.典型三维机械结构拓扑优化设计[J].机械强度,2006,28(6):825-832. 被引量:9
  • 4Luo J, Gea H C. A systematic topology optimization approach for optimal stiffener design [ J ]. Structural and Multidisciplinary Optimization, 1998, 16(4):280-288.
  • 5Tam H Nguyen, Glaucio H Paulino, Junho Song, et al. A computational paradigm for multiresolution topology optimization ( MTOP ) [ J ]. Structural and Multidisciplinary Optimization, 2010, 41(4): 525-539.
  • 6Nha D Chu, Xie Y M, Steven G P. An evolutionary method for optimal design of plates with discrete variable thicknesses subject to constant weight [J]. Structural and Muhidisciplinary Optimization, 1999, 17(1): 55-64.
  • 7Lazarus H Tenek, Ichiro Hagiwara. Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 115(1-2): 111-124.
  • 8Allaire G, Jouve F, Maillot H. Topology optimization for minimum stress design with the homogenization method [ J ]. Structural and Muhidisciplinary Optimization, 2004, 28 (2-3) : 87-98.
  • 9Xiaodong Huang, Yi-Min Xie. A further review of ESO type methods for topology optimization [ J ]. Structural and Muhidisciplinary Optimization, 2010, 41 (5): 671-683.
  • 10Sigmund O, Petersson J. Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima [ J ]. Structural and Multidisciplinary Optimization, 1998, 16( 1 ):68-75.

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部