期刊文献+

预锂化法制备高首圈库伦效率的SnO2-Fe2O3@C负极材料

Preparation of SnO2-Fe2O3@C anode with high initial coulombic efficiency by pre-lithization method
下载PDF
导出
摘要 将SnO2-Fe2O3@C负极材料与金属锂片同时浸泡在商用二元电解液中,对SnO2-Fe2O3@C负极材料进行预锂化处理以提高该负极材料的首圈库伦效率。通过XRD、SEM和TEM分析了预锂化时间对材料晶相结构和表面微观形貌的影响。恒流充放电测试结果表明预锂化时间为8小时得到的SnO2-Fe2O3@C负极材料的首圈库伦效率高达94%,在0.2A·g^-1的电流密度下循环100圈后仍有862mAh·g^-1的可逆容量,容量保持率为89.3%。 The SnO2-Fe2O3@C anode materials were pre-lithiated by immersing the SnO2-Fe2O3@C anode materials and lithium foil in binay electrolyte simultaneously to improve the initial coulombic efficiency of SnO2-Fe2O3@C anode materials.X-ray diffraction(XRD),scanning electron microscope(SEM)and transmission electron microscope(TEM)were utilized to analyzethe effect of pre-lithization time on the crystal structure and surface morphology of the materials.The results of galvanostatic charge-discharge tests showed that the initial coulombic efficiency of SnO2-Fe2O3@C anode obtained after 8 hours of pre-lithization was 94%,moreover,the reversible capacity after 100 cycles at 0.2 A·g^-1 was 862.7mAh·g^-1 with a retention of 89.3%.
作者 代宇 任锐 储伟 DAI Yu;REN Rui;CHU Wei(College of Chemical Engineering,Sichuan University,Chengdu 610065,China)
出处 《化学研究与应用》 CAS CSCD 北大核心 2019年第6期1148-1154,共7页 Chemical Research and Application
基金 国家自然科学基金项目(21872098)资助
关键词 锂离子电池 负极 预锂化 二氧化锡基复合材料 首圈库伦效率 li-ion batteries anode pre-lithization tin dioxide-based composite initial coulombic efficiency
  • 相关文献

参考文献2

二级参考文献30

  • 1YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte- Chemie International Edition, 2012, 51(24): 5 798-5800.
  • 2BYUNGCHUL J,MIHYUN P,CHAE OH B.T-cell receptors binding orientation over Peptide/MHC class I is driven by long-range inter- actions[J]. J Am Chem Soc, 2012, 134(36):15010-15015.
  • 3ABEL P R, LIN Y M,CELIO H,et al.Improving the stability ofnano- structured silicon thin film lithium -ion battery anodes through their controlled oxidation [J]. ACS Nano, 2012, 6(3): 2506-2516.
  • 4WU H, ZHENG G Y, LIU N, et al.Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Let-t, 2012 (12): 904-909.
  • 5KRAYTSBERG A, EIN-ELI Y. A review of 5 volt cathode materials for advanced lithium-ion batteries [J]. Advanced Energy Materials, 2012, 2(8): 922 -939.
  • 6MANGAYARKARASI N, SARAVANAN K, PHUA E J H, et al. Redox-active metal-centered oxalato phosphate open framework cathode materials for lithium ion batteries [J]. Angewandte Chemie, 2012, 124(24): 5968-5972.
  • 7JEONG S S, BOCKENFELD N, BALDUCCI A, et al. Natural cellu- lose as binder for lithium battery electrodes [J]. Journal of Power Sources, 2012, 199(1): 331-335.
  • 8JOHN C, NEWMAN J.Cyclable lithium and capacity loss in Li-ion cells [J]. Journal of the Electrochemical Society, 2005, 152 (4): A818-A829.
  • 9DEVARAJ S, GRUGEON S, LARUELLE S, et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries [J]. Electrochemistry Communications, 2010, 12(10): 1344-1347.
  • 10DENIS Y W, YANAGIDA K, KATO Y, et al. Electrochemical activities in Li2MnO3 [J]. Journal of the Electrochemical Society, 2009, 156(6): A417-A424.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部