期刊文献+

干旱区植物叶片识别研究 被引量:2

Study on Plant Leaf Identification in Arid Area
下载PDF
导出
摘要 现有植物叶片识别方法都是基于扁平状叶片,而干旱区植物叶片多呈针叶,因此不适合干旱区植物叶片的识别,使得对于干旱区植物研究主要依靠专家识别,不利于对干旱区植物叶片的进一步研究。提出使用差异性值监督局部线性嵌入算法D-LLE,充分挖掘样本之间的类别信息,提高干旱区植物叶片的识别效率。首先利用金字塔梯度方向直方图(PHOG)的方法提取叶片图像特征,再使用PCA、LLE、WLLE、D-LLE等主流的降维算法,对提取的PHOG特征进行降维,最后建立支持向量机(SVM)的分类模型对植物叶片图像分类。经过这四种降维算法后的平均识别率分别为76.3%、85.3%、89.1%、95.5%;骆驼刺、苦豆子和沙枣的叶片正确识别率,相对其他植物叶片较低。通过实验证明了PHOG特征在植物叶片特征提取的可行性,使用D-LLE算法相比传统特征降维的算法具有更高的效率,且较适合于干旱区植物叶片的自动识别分类。 The existing plant leaf identification methods are based on flat- shaped leaves, while the arid areas of plant leaves are more needles, so it is not suitable for the identification of plant leaves in arid areas, so that the plant researches in arid area rely mainly on expert identification, not conducive to the further study of plant leaves in arid area. A Local Linear Embedding Algorithm D-LLE is proposed using the difference value to fully excavate the classification information between the samples to improve the identification efficiency of plant leaves in arid area. The Pyramid Histograms of edge Orientation Gradients(PHOG)is used to extract the leaf image features, then reduces the dimension of the extracted PHOG features by using the mainstream dimensionality reduction algorithm, such as PCA, LLE, WLLE, D-LLE. Finally, the classification model of Support Vector Machine(SVM)is established to classify the plant leaf images. The average recognition rates of these four dimensionality reduction algorithms are 76.3%, 85.3%, 89.1%, 95.5%. Respectively, compare with other plant leaves, the correct recognition rates of the leaves of camel prickles, kudou and zizyphus jujuba are low. This proves that PHOG is feasible in feature extraction of plant leaves by experiments. Furthermore, the D-LLE algorithm is more efficient than the traditional feature reduction algorithms and more suitable for automatic recognition and classification of plant leaves in arid area.
作者 王丹 郑江华 努尔巴依 WANG Dan;ZHENG Jianghua;NU Erbayi(College of Resources and Environment Science,Xinjiang University,Urumqi 830046,China;Key Laboratory for Oasis Ecology,Xinjiang University,Urumqi 830046,China;Institute of Arid Ecology and Environment,Xinjiang University,Urumqi 830046,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第13期129-133,共5页 Computer Engineering and Applications
基金 新疆维吾尔自治区青年科技创新人才培养工程(2017—2018) 新疆维吾尔自治区治蝗灭鼠指挥办公室委托项目(2017)
关键词 金字塔梯度方向直方图 差异性值 支持向量机 干旱区植物叶片 Pyramid Histograms of edge Orientation Gradients(PHOG) dissimilarity Support Vector Machine(SVM) plant leaves in area
  • 相关文献

参考文献5

二级参考文献75

  • 1傅弘,池哲儒,常杰,傅承新.基于人工神经网络的叶脉信息提取——植物活体机器识别研究Ⅰ[J].植物学通报,2004,21(4):429-436. 被引量:40
  • 2赵温波,杨鹭怡,王立明.径向基概率神经网络的混合结构优化算法[J].系统仿真学报,2004,16(10):2175-2180. 被引量:14
  • 3傅星,卢汉清,罗曼丽,曹伟,于兴华.应用计算机进行植物自动分类的初步研究[J].生态学杂志,1994,13(2):69-71. 被引量:8
  • 4王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:114
  • 5Du Jixiang, Huang D S, Wang Xiaofeng, et al. Shape recognition based on radial basis probabilistic neural network and application to plant species identification[J]. Lecture Notes in Computer Science, Springer-Verlag, 2005, 3497: 281 -285.
  • 6Gu Xiao, Du Jixiang. Leaf recognition based on the skeleton segmentation[J]. Lecture Notes in Computer Science, Springer-Verlag, 2005, 3644: 253-262.
  • 7Li Y F, Zhu Q S, Cao Y K, et al, A leaf vein extraction method based on snakes technique[C]. Proceedings of IEEE International Conference on Neural Networks and Brain,2005,885-888.
  • 8Camargo Neto, J., Meyer, G.E., Jones, D.D., Samal, A.K. Plant species identification using Elliptic Fourier leaf shape analysis[J]. Computers and Electronics in Agriculture, 2006, 50(2): 121- 134.
  • 9Bruno O M, Plotze R O, Falvo M, et al. Fractal dimension applied to plant identification[J]. Inform. Sci, 2008, 178(12): 2722-2733.
  • 10Jolliffe I T. Principal Component Analysis[M]. Berlin: Springer, 1989.

共引文献94

同被引文献12

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部