期刊文献+

机制转换下考虑通胀的脆弱期权定价

Pricing Vulnerable Options Regarding Inflation under Regime Switching
下载PDF
导出
摘要 在机制转换框架下研究了带通胀影响的脆弱欧式期权定价模型。首先,使用消费篮子价格方程来折现股票价格和期权卖方资产价格,导出更符合实际市场的动力学方程;其次,对方程中的扩散部分采用Esscher转换建立相应的等价鞅测度;最后,利用拉普拉斯变换得到了脆弱欧式看涨期权价格的闭型解。 In this paper, we study the pricing of vulnerable European options under inflation. Firstly, we use the basket price equation to discount the stock price and the asset value of the option seller, and derive more market practical dynamics equations. Secondly, we adopt the Esscher Transform for the diffusion parts of the equations to determine an equivalent martingale measure. Finally, a closed-form solution for prospective vulnerable European options is obtained by using Laplace Transform.
作者 李钰 李娟 石学芹 吕会影 LI Yu;LI Juan;SHI Xueqin;LU Huiying(Department of Public Basic Courses Teaching,Anhui Technical College of Mechanical and Electrical Engineering,Wuhu, Anhui 241000, China;School of Economics and Management,Wuhu Institute of Technology,Wuhu, Anhui 241000, China;School of Mathematics and Physics, Anhui Polytechnic University,Wuhu, Anhui 241000, China)
出处 《西昌学院学报(自然科学版)》 2019年第2期63-66,共4页 Journal of Xichang University(Natural Science Edition)
基金 安徽省高校自然科学重点研究项目(KJ2017A550)
关键词 最优投资组合 通胀 ESSCHER变换 随机微分方程 optimum investment portfolio inflation Esscher transform stochastic differential equation
  • 相关文献

参考文献1

二级参考文献10

  • 1夏登峰,费为银,梁勇.带含糊厌恶的股东价值最大化[J].中国科学技术大学学报,2010,40(9):920-924. 被引量:8
  • 2Karatzas I, Shreve S E. Methods of Mathematical Finance[M]. New York: Springer, 1998.
  • 3Knight F H. Risk, Uncertainty and Profit[M]. Boston: Houghton Mifflin, 1921.
  • 4Ellsberg D. Risk, ambiguity and the savage axioms[J]. Quarterly Journal of Economics, 1961, 75(4): 643-699.
  • 5Chen Z, Epstein L G. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002, 70(4): 1403-1443.
  • 6Fei W Y. Optimal consumption and portfolio choice with ambiguity and anticipation[J]. Information Sci- ences, 2007, 117(23): 5178-5190.
  • 7Fei W Y. Optimal portfolio choice based on MEU under ambiguity[J]. Stochastic Models, 2009, 25(3): 455-482.
  • 8Bensoussan A, Keppo J, Sethi S P. Optimal consumption and portfolio decisions with partially observed real prices[J]. Mathematical Finance, 2009, 19(2): 215-236.
  • 9Karoui E1 N, Peng S, Quenez M C. Backward stochastic differential equations in finance[J]. Mathematical Finance, 1997, 7(1): 1-71.
  • 10夏登峰,费为银,刘宏建.变折现率下带含糊厌恶与预期的最优投资研究[J].应用概率统计,2010,26(3):270-276. 被引量:12

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部