期刊文献+

Android平台下的基于应用分类和敏感权限挖掘的恶意应用检测方法研究 被引量:1

Research on Malicious Application Detection Method Based on Application Classification and Sensitive Permission Mining Under Android Platform
下载PDF
导出
摘要 Android智能手机的快速发展在给人们的日常生活带来便利的同时,Android恶意应用的数量也在日益增多,因此如何有效地对恶意应用进行检测就成为了近年来信息安全领域的热点问题。针对该问题,论文提出了一种基于应用分类和敏感权限的恶意应用检测方法。首先从谷歌商店按类别获取应用样本集,然后利用SMO算法形成分类模型。同时对这些应用样本集进行频繁模式挖掘得到每一类应用的敏感权限项集,并根据每一类应用敏感权限的使用情况,计算出该类应用的敏感阈值。当有应用安装时,利用分类模型给应用程序进行正确分类,并统计出该应用中敏感权限的使用情况,计算出该应用的敏感值,并与该类应用的敏感阈值进行比较,判断是否为恶意应用。实验结果表明了该方法是可行且有效的,提高了恶意应用检测准确率。 The rapid development of Android smartphones has brought convenience to people’s daily life,while the number of Android malicious applications is increasing,so how to detect malicious applications effectively has become a hot issue in the field of information security in recent years. Aiming at this problem,this paper proposes a malicious application detection method based on application classification and sensitive permission. First,the application sample set is obtained from the Google Store by category. Then,the classification model is formed by using the SMO algorithm. And the sensitive permission item set of each class of application is obtained by frequent pattern mining of these applied sample sets,and the sensitive threshold value of the application is calculated according to the use of sensitive permission in each class of application. When an application is installed,the classification model is used to classify the application correctly,and the sensitivity of the application is calculated,the sensitivity value of the application is computed,and the sensitivity threshold value is compared to determine whether it is a malicious application. The experimental results show that the method is feasible and effective,and the accuracy of the detection of malicious applications is improved.
作者 刘倩 韩斌 LIU Qian;HAN Bin(School of Computer Science,Jiangsu University of Science and Technology,Zhenjiang 212000)
出处 《计算机与数字工程》 2019年第6期1446-1451,1481,共7页 Computer & Digital Engineering
关键词 Android智能手机 应用分类 敏感权限 恶意应用检测 Android smartphone application classification sensitive permissions malicious application detection
  • 相关文献

参考文献4

二级参考文献54

  • 1龚静,周经野.一种基于多重因子加权的文本特征项权值计算方法[J].计算技术与自动化,2007,26(1):81-83. 被引量:10
  • 2Aas K,Eikvil L.Text Categorization:A Survey[R].Oslo,Norway:Norwegian Computing Center,Tech.Rep.:NR941,1999.
  • 3How B C,Narayanan K.An Empirical Study of Feature Selection for Text Categorization Based on Term Weightage[C]//Proc.of IEEE/WIC/ACM International Conference on Web Intelligence.Washington D.C.,USA:IEEE Computer Society,2004.
  • 4Salton G,Clement T Y.On the Construction of Effective Vocabu-laries for Information Retrieval[C]//Proc.of 1973 Meeting on Pro-gramming Languages and Information Retrieval.New York,USA:ACM Press,1973.
  • 5Salton G,Fox E A,Wu H.Extended Boolean Information Retrie-val[J].Communications of the ACM,1983,26(11):1022-1036.
  • 6Liu Huan,Yu Lei.Toward Intergrating Feature Selection Algo-rithms for Classification and Clustering[J].IEEE Trans.on Knowledge and Data Engineering,2005,17(5):491-502.
  • 7张玉芳,陈小莉,熊忠阳.基于信息增益的特征词权重调整算法研究[J].计算机工程与应用,2007,43(35):159-161. 被引量:33
  • 8Asaf Shabtai,Uri Kanonov,Yuval Elovici,Chanan Glezer,Yael Weiss.“Andromaly”: a behavioral malware detection framework for android devices[J].Journal of Intelligent Information Systems.2012(1)
  • 9Ritchie 0 M,Thompson K. The UNIX time-sharing system [ J ]. BellSystem Technical Journal, 1978,57(6): 1905-1929.
  • 10Qiu Lili, Zhang Yin, Wang Feng, et al. Trusted computer systemevaluation criteria [ S ]. [ S. 1. ] : National Computer Security Center,1985.

共引文献128

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部