期刊文献+

面向语义分割机器视觉的AutoML方法 被引量:6

AutoML method for semantic segmentation of machine vision
下载PDF
导出
摘要 自动机器学习(Automatic Machine Learning,AutoML)可实现语义分割,使机器学习大部分步骤自动化。针对面向超参数优化、迁移学习、神经架构搜索等方法的算法思想、优化对象、实现技术、技术指标、应用效果及场景,结合语义分割的机器学习超参数多、数据集规模较小、标注工作量大等问题,指出超参数优化、迁移学习、神经架构搜索分别有助于提升训练效率、降低样本标注工作量、自动构建专用卷积神经网络,若Au-toML与机器视觉相结合可赋予系统自学习、快速更换检测对象和解决特别复杂任务等特性。 Automatic machine learning(AutoML)can automate most machine learning process of semantic segmentation.This paper discusses hyper-parameter optimization,transfer learning,and neural architecture search methods.The differences among algorithm thought,optimization objects,deployment methodology,technical indicators,application effects and scenarios of these methods are compared.The problems of the machine learning of semantic segmentation have been pointed out,such as multiple super parameters,small data set and large labeling workload.Draw the conclusion that the super-parameter optimization,transfer learning and neural architecture search are helpful to improve training efficiency,reduce the workload of sample labeling and automatically construct special convolutional neural network,respectively.If combined AutoML with machine vision,it can endow the system with characteristics such as self-learning,rapid replacement of test objects and solving complex tasks.
作者 刘桂雄 黄坚 刘思洋 廖普 LIU Guixiong;HUANG Jian;LIU Siyang;LIAO Pu(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China)
出处 《激光杂志》 北大核心 2019年第6期1-9,共9页 Laser Journal
基金 广州市产学研协同创新重大专项(No.2017010160641) 广东省现代几何与力学计量技术重点实验室开放课题(No.SCMKF201801)
关键词 机器视觉 语义分割 自动机器学习 超参数优化 迁移学习 神经架构搜索 machine vision semantic segmentation automatic machine learning(AutoML) hyper-parameter opti-mization transfer learning neural architecture search
  • 相关文献

参考文献1

共引文献137

同被引文献61

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部