期刊文献+

基于超像素分割的实时野外场景理解 被引量:3

Real-Time Nature Scene Understanding Based on Superpixel Segmentation
下载PDF
导出
摘要 提出了一个实时野外场景理解算法,可以广泛地应用于自主野外环境探索、辅助驾驶系统等方面.为了提升分类算法的速度和精度,采用快速的超像素分割来对场景进行预处理,然后针对每个超像素区域提取HSV颜色特征、LBP纹理特征和EOH边缘梯度特征构建其多维特征向量,并采用多类Real AdaBoost算法进行特征训练得到场景分类器.实验证明,提出的算法不仅具有良好的实时性,同时由于采用超像素进行分割预处理,有效地提升了对场景中不同类别的分类精度. A real-time algorithm for nature scene understanding is proposed, which is able to be used for environment exploration and driving assistance. To improve accuracy and speed, preprocessing is implemented by rapid superpixel segmentation. Combining HSV feature, LBP texture feature and EOH feature to construct feature description, and classifier can be acquired by multi-class Real AdaBoost training. Experimental results prove that the algorithm can meet real time running. Further, classification accuracy is effectively boosted by superpixel segmentation.
作者 高玉潼 原玥 GAO Yutong;YUAN Yue(School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China;School of Information Engineering, Shenyang University, Shenyang 110044, China)
出处 《沈阳大学学报(自然科学版)》 CAS 2019年第3期210-216,共7页 Journal of Shenyang University:Natural Science
基金 国家自然科学基金资助项目(61401081)
关键词 超像素分割 HSV颜色特征 LBP特征 EOH特征 多类Real ADABOOST superpixel segmentation HSV feature LBP feature EOH feature multi-class real AdaBoost
  • 相关文献

参考文献5

二级参考文献50

  • 1Dalai N, Triggs B. Histograms of oriented gradients for human detection [C] //Proceedings ofConference Computer Vision and Pattern Recognition. Los Alamitos: IEEE Compute Society Press, 2005, 1:886-893.
  • 2Deniz O, Bueno G, Salito J, et al. Face recognition using histograms of oriented gradients [J]. Pattern Recognition Letters, 2011, 32(12): 1598-1603.
  • 3Yang P, Shan S G, Gao W, et al. Face recognition using Aria-Boosted Gabor features [C] //Proceedings of the 6th 1EEE International Conference on Automatic Face and Gesture Recognition. Los Alamitosl IEEE Computer Society Press, 2004:356-361.
  • 4Zhang W C, Shan S G, Gao W, et al. Local Gabor binary pattern histogram sequence ( LGBPHS ) : a novel non-statistical model for face representation and recognition [C] //Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2005:786-791.
  • 5Tan X Y, Triggs B. Fusing Gabor and LBP feature sets for kernel based face recognition [C] //Proceedings of the 3rd International Conference on Analysis and Modeling of Faces and Gestures. Heidelberg: Springer, 2007:235-249.
  • 6Oiala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996, 29(1) : 51-59.
  • 7Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: application to face recognition [M]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041.
  • 8Lowe D G. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 9Bicego M, Lagorio A, Grosso E, et al. On the use of sift features for face authentication [C]/Proceedings of Conference on Computer Vision and Pattern Recognition Workshop. Los Alamitos: IEEE Computer Society Press, 2006 : 35.
  • 10Albiol A, Monzo D, Martin A, et al. Face recognition using ttOG-EBGM [J]. Pattern Recognition Letters, 2008, 29 (10): 1537-1543.

共引文献469

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部