期刊文献+

基于DE-BP神经网络的公共自行车站点需求量预测方法研究

Demand forecasting methods based on DE-BP neural network in public bicycle stations
下载PDF
导出
摘要 通过对苏州高新区金狮大厦公共自行车站点历史借还数据进行周期相似性分析,选择工作日的数据作为样本数据,在此基础上构建基于BP神经网络公共自行车站点借还量预测模型,最后利用差分进化(DE)算法对BP神经网络模型进行优化,预测仿真结果表明,DE-BP神经网络模型精度较传统BP神经网络模型高。 By analyzing the cycle similarity of the historical borrowing and returning data of the public bicycle station at Golden Lion Building in Suzhou High-tech Zone, the working day data are selected as the sample data. On this basis, the paper constructs a predictive model of borrowing and returning amount of public bicycle stations based on BP neural network. Finally, the BP neural network model is optimized by the differential evolution (DE) algorithm. The simulation results show that the DE-BP neural network model is more accurate than the traditional BP neural network model.
作者 周敏 朱从坤 ZHOU Min;ZHU Congkun(School of Civil Engineering, SUST, Suzhou 215011, China)
出处 《苏州科技大学学报(工程技术版)》 CAS 2019年第2期20-25,共6页 Journal of Suzhou University of Science and Technology(Engineering and Technology Edition)
关键词 公共自行车 需求预测 BP神经网络 差分进化 public bicycle demand forecasting BP neural network differential evolution
  • 相关文献

参考文献2

二级参考文献21

  • 1李正浩.城市公共自行车租赁站远期发展规模分析[J].交通节能与环保,2010,6(2):44-46. 被引量:18
  • 2周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 3Leland, Taqqu M S, Willinger W, et al. On the self-similar nature of ethemet traffic (extended version) [J]. IEEE Trans on Networking ,2009,32(3): 1-15.
  • 4Paxson V, Fbyd S. Wide-area traffic: the failure of Poisson. modeIing[J]. IEEE/ACM Transaction on Networking,2009, 32 (5):226-244.
  • 5高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社.2009.
  • 6Price K, Storn R, Lampinen J. Differential evolution: a practical approach to global optimization[M]. Berlin:Springer,2005.
  • 7MAYER D G,KINGHORN B P,ARCHER A A. Differential evolution:an easy and efficient evolutionary algorithm for model optimisation[J]. Agricultural Systems, 2004, 83 (5) : 315-328.
  • 8张建林.MATLAB&EXCEL定量预测与决策[M].北京:电子工业出版社,2012.
  • 9KALTENBRUNNER A, MEZA R, GRIVOLLA J, et al. Ur- ban Cycles and Mobility Patteas: Exploring and Predicting Trends in a Bicycle-Based Public Transport System[J]. Per- vasive and Mobile Computing, 2010, 6(4): 455-466.
  • 10姚峰,杨卫东,张明,李仲德.改进自适应变空间差分进化算法[J].控制理论与应用,2010,27(1):32-38. 被引量:23

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部