期刊文献+

基于储层网络算法的带噪图像识别技术研究与应用

Research and Application on Reservoir Computing Networks for Noisy Image Recognition Technology
下载PDF
导出
摘要 储层网络算法(RCN)是一种特殊的递归神经网络,其输入和递归关系是随机产生的,只对输出结果进行加权训练。RCN具有处理时域信息、易于训练和抗噪能力强的特点。通过优化RCN的参数,该算法在语音识别领域有较好的抗噪性。本研究的目的是将该算法拓展到图像处理领域,并证明通过参数调优,RCN在图像处理领域有着同样稳定的抗噪性。基于优化参数后的RCN手写数字识别器在以MNIST数据分析库为基准的干净测试样本上进行测试,错误率降低到0.81%,其降噪器能够有效地过滤掉各种类型的噪声。 Reservoir Computing Networks(RCN)are a special type of recursive neural networks,which the input and the recursive connections are randomly generated.Only the output weights are trained.Besides the ability to process temporal information,the key points of RCN are easy training and robustness against noise.Through tuning the parameters of RCN,evaluation in the domain of noise robust speech recognition proves that this method is effective.The aim of this work is to extend that study to the field of image processing,by showing that the proposed parameter tuning procedure is equally valid in the field of image processing.In particular,we investigate the potential of RCN in achieving competitive performance on the MNIST dataset by following the aforementioned parameter optimizing strategy.The experiments demonstrate that the proposed RCN-based handwritten digit recognizer achieves an error rate of 0.81 percent on the clean test data of the MNIST benchmark and the proposed RCN-based denoiser can effectively filter the various types of noise.
作者 蒋再新 程海艳 池小兵 张海利 崔海婷 JIANG Zaixin;CHENG Haiyan;CHI Xiaobing;ZHANG Haili;CUI Haiting(Qinzhou Power Supply Bureau,Guangxi Power Grid Co.,Ltd., Qinzhou, Guangxi 535000, China;State Grid Ningxia Electric Power Co., Ltd.,Maintenance Company,Yinchuan, Ninxia 750000, China)
出处 《东北电力技术》 2019年第5期34-38,共5页 Northeast Electric Power Technology
基金 广西电网有限责任公司科技项目资助(0406002018030101SB00035)
关键词 储层网络 递归神经网络 文本识别 图像分类 图像去噪 reservoir computing networks recursive neural networks text recognition image classification image denoising
  • 相关文献

参考文献8

二级参考文献147

  • 1Bayes T R. An Essay toward Solving a Problem in the Doctrine of Chances[J].Philosophical Transactions of the Royal Society,1763.370-418.
  • 2Jeffries H. An Invariant Form for the Prior Probability in Estimation Problems[J].Proceedings of Roy Soc Lond,1946.453-461.
  • 3Pearl J. Probabilistic Reasoning in Intelligent Systems[M].Morgan Kaufinann:Network of Plausible Inference,1988.1-86.
  • 4Geiger D,Verma,T. D-Separation:From Theorems to Algorithms[A].Windsor,Ontario,1989.118-125.
  • 5Pearl J. Propagation and Structuring in Belief Networks[J].Artificial Intelligence,1986,(03):241-288.
  • 6Suermondt H J,Cooper G F. Probabilistic Inference in Multiply Connected Belief Networks Using Loop Cutsets[J].International Journal of Approximate Reasoning,1990,(04):283-306.
  • 7Diez F J. Local Conditioning in Bayesian Networks[J].Artificial Intelligence,1996,(1-2):1-20.
  • 8Darwiche A. Recursive conditioning[J].Artificial Intelligence,2001,(1-2):5-41.
  • 9Lauritzen S L,Spiegelhalter D J. Local Computations with Probabilities on Graphical Structures and Their Applications to Expert Systems[J].Proceedings of the Royal Statistical Society,1988,(50):154-227.
  • 10Shenoy P,Shafer G. Axioms for Probability and Belief-function Propagation[J].Uncertainty in AI,1990.169-198.

共引文献626

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部